4.6 Article

In situ cross-linked and highly carboxylated poly(vinyl alcohol) nanofibrous membranes for efficient adsorption of proteins

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 3, 期 36, 页码 7281-7290

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tb01192b

关键词

-

资金

  1. National Natural Science Foundation of China [51322304]
  2. Shanghai Committee of Science and Technology [12JC1400101]
  3. Fundamental Research Funds for the Central Universities
  4. DHU Distinguished Young Professor Program

向作者/读者索取更多资源

Creating adsorptive materials for the fast, efficient, and high-throughput adsorption and purification of proteins is critical to meet the great demands for highly purified proteins, yet it has proven to be a highly challenging task. Here, we report that cross-linked and highly carboxylated poly(vinyl alcohol) (PVA) nanofibrous membranes were fabricated by a combination of electrospinning and the in situ graft polymerization of PVA and maleic anhydride (MAH) under mild conditions. Taking advantage of the large surface area available for protein binding, the highly tortuous porous structure, and the robust mechanical properties, the resultant PVA/MAH nanofibrous membranes exhibited a good integrated adsorption performance towards lysozyme, including a superior adsorption capacity of 177 mg g(-1), fast adsorption equilibrium within 4 h, good selectivity, and good reversibility. Moreover, the saturation dynamic adsorption amount towards lysozyme reached 159 mg g(-1) under 750 Pa driven solely by gravity, which conformed to the specified requirements for high adsorption capacity under relatively low pressure drops. Furthermore, the adsorption performance towards a protein mixture was analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and the resultant PVA/MAH nanofibrous membranes retained excellent stability under depyrogenation conditions. The successful fabrication of such fascinating nanofibrous materials by using this simple and intriguing approach may provide new insights into the design and development of adsorptive materials for the purification of proteins with superior adsorption performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Materials Science, Biomaterials

An artificial protein cage made from a 12-membered ring

Izabela Stupka, Artur P. Biela, Bernard Piette, Agnieszka Kowalczyk, Karolina Majsterkiewicz, Kinga Borzecka-Solarz, Antonina Naskalska, Jonathan G. Heddle

Summary: Artificial protein cages, such as TRAP-cages, have potential applications in vaccines and drug delivery. TRAP-cages have the ability to control the disassembly conditions by modifying the interface between their building blocks. By using TRAP rings with different numbers of monomers, it is possible to predict the formation of other cages.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Facile one-pot synthesis of flower-like ellagic acid microparticles incorporating anti-microbial peptides for enhanced wound healing

Guo Zhang, Yu Wang, Hua Qiu, Lei Lu

Summary: This study presents a one-pot synthesis method for flower-like AMPs@EAMP particles by combining antimicrobial peptides with ellagic acid, offering enlarged surface area, excellent biocompatibility, and broad-spectrum antibacterial activity. In vivo studies indicate their potential for tissue repair and immune barrier reconstruction.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Transparent silk fibroin film-facilitated infected-wound healing through antibacterial, improved fibroblast adhesion and immune modulation

Jiamei Zhang, Lingshuang Wang, Cheng Xu, Yingui Cao, Shengsheng Liu, Rui L. Reis, Subhas C. Kundu, Xiao Yang, Bo Xiao, Lian Duan

Summary: Pluronic F127 modified silk fibroin film with different types of antibacterial agents could accelerate wound recovery by promoting fibroblast adhesion, eradicating bacteria, and facilitating angiogenesis and re-epithelialization.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Article Materials Science, Biomaterials

Polyarylether-based COFs coordinated by Tb3+ for the fluorescent detection of anthrax-biomarker dipicolinic acid

Yinsheng Liu, Mingyue Wang, Yinfei Hui, Lei Sun, Yanrui Hao, Henlong Ren, Hao Guo, Wu Yang

Summary: In this study, a rare-earth hybrid luminescent material was developed for the detection of a biomarker for anthrax. The material showed excellent selectivity and high sensitivity, allowing for the determination of the biomarker in saliva and urine. Additionally, a convenient point-of-care testing method using fluorescent test paper and a smartphone was established for the initial diagnosis of anthrax.

JOURNAL OF MATERIALS CHEMISTRY B (2024)

Review Materials Science, Biomaterials

Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications

Wenshuai Yang, Jingsi Chen, Ziqian Zhao, Meng Wu, Lu Gong, Yimei Sun, Charley Huang, Bin Yan, Hongbo Zeng

Summary: Injectable hydrogels with shear-thinning and/or in situ formation properties offer distinct advantages in bioengineering applications, as they can be directly delivered to target sites, possess self-healing abilities, and simplify the implantation process.

JOURNAL OF MATERIALS CHEMISTRY B (2024)