4.6 Article

Detection of fibronectin conformational changes in the extracellular matrix of live cells using plasmonic nanoplates

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 3, 期 47, 页码 9140-9147

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tb02060c

关键词

-

资金

  1. European Commission's Seventh Framework Programmes Marie Curie IEF [328466]

向作者/读者索取更多资源

Protein conformational changes are detected both in vitro and for the first time in the presence of living cells using versatile plasmonic nanoplates. Au-edge-coated triangular silver nanoplates (AuTSNP) exhibit some of the highest refractive index sensitivity values recorded to date and exhibit a strong spectral response to surface biomolecular interactions. Large spectral shifts of over 30 nm distinguish between pH induced compact and extended conformations of the ubiquitous extracellular matrix protein fibronectin (Fn). Conformational transition of Fn from compact to extended is accompanied by a red spectral shift of 27 nm while a corresponding blue spectral shift of 25 nm accompanies the reverse conformational transition. Cleavage of Fn by cathepsin B, which plays an important role in cellular functions and in cancer metastasis is characterised by a blue spectral shift with detection in serum using a straightforward no-wash assay demonstrated. Spectral monitoring of nanoplates decorated with Fn and incubated with MDCK II cells shows extensive shifts of 156 nm and cellular morphological re-arrangement as Fn uncoils from a compact format to from fibrils within the extracellular matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据