4.6 Review

Magnetic titanium dioxide based nanomaterials: synthesis, characteristics, and photocatalytic application in pollutant degradation

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 34, 页码 17511-17524

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta03215f

关键词

-

资金

  1. Department of Energy
  2. State of Wyoming

向作者/读者索取更多资源

Magnetic titanium dioxide based nanocomposites have been gaining increasingly high attention in sustainable environmental protection fields; these materials can integrate the advantages of magnetic recovery and the superior photocatalysis performance of titanium dioxide. However, direct contact between crystalline photoactive titanium dioxide and magnetic iron oxide gives rise to lower photoreactivity than pure titanium dioxide for the pollutant degradation. To overcome the challenge, a number of researches have been done and significant process has been made in this area in recent years. This review primarily focuses on the properties of magnetic particles, structural models, preparation methods and techniques to improve photocatalytic performance of magnetic titanium dioxide based photocatalysts, and aims to provide a systematic overview of the current knowledge of these subjects. Notably, the recently discovered technique coupling graphene into magnetic iron oxide-titanium dioxide system is discussed, which opens a promising future for preparation of magnetic semiconductors with excellent properties. Current challenges and prospects are also proposed at the end of this article. In particular, the examination of corresponding deactivation or regeneration mechanisms should be investigated further, from the point of view of practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Chemistry, Multidisciplinary

Emerging catalysts for the ambient synthesis of ethylene glycol from CO2 and its derivatives

Runping Ye, Yuan-Yuan Huang, Chong-Chong Chen, Yuan-Gen Yao, Maohong Fan, Zhangfeng Zhou

Summary: This article reviews various approaches to synthesize ethylene glycol (EG) from CO2 and its derivatives under mild conditions, including thermocatalysis, photocatalysis, and electrocatalysis. The coal-to-ethylene glycol technology, a mature thermal catalytic method, still faces challenges in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is discussed, with a focus on achieving EG synthesis under mild conditions through strategies such as doping promoters, support modification, and catalyst design. The emerging technological progress of photocatalytic and electrocatalytic EG synthesis under ambient conditions is also introduced, highlighting the need to address issues for large-scale production. Future development issues and prospects for ambient EG synthesis using different catalytic routes are proposed.

CHEMICAL COMMUNICATIONS (2023)

Article Chemistry, Physical

Unraveling the Surface State Evolution of IrO2 in Ethane Chemical Looping Oxidative Dehydrogenation

Lulu Ping, Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: Based on the advantages of ethane oxidative dehydrogenation and the challenge of low ethylene selectivity, chemical looping oxidative dehydrogenation (CL-ODH) over the IrO2 catalyst was studied. The study revealed that both S-IrO2 and R-IrO2 states exist for the IrO2 catalyst in the dehydrogenation and regeneration processes, and the optimal reaction conditions were determined. This research expands the understanding of ethane CL-ODH over metal oxide catalysts and provides valuable information for process optimization and catalyst development.

ACS CATALYSIS (2023)

Article Nanoscience & Nanotechnology

Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness

Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: In this study, a strategy to improve the catalytic performance of Pt-Sn alloy catalysts in ethane dehydrogenation (EDH) is proposed by engineering the shell surface structure and thickness. Density functional theory (DFT) calculations and kinetic Monte Carlo (kMC) simulations are used to understand the influences of catalyst surface structure, temperature, and reactant partial pressures. The results demonstrate that Pt@Pt3Sn catalysts generally have higher C2H4(g) activity and lower selectivity compared to Pt3Sn@Pt catalysts, due to their unique surface geometrical and electronic properties.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Intelligent Chip-Controlled Smart Oxygen Electrodes for Constructing Rechargeable Zinc-Air Batteries with Excellent Energy Efficiency and Durability

Lulu Chai, Jinlu Song, Yanzhi Sun, Xiaoguang Liu, Xifei Li, Maohong Fan, Junqing Pan, Xueliang Sun

Summary: This study proposes a smart dual-oxygen electrode for high-specific-energy batteries, which addresses the issues of energy efficiency decay, wide charge-discharge gap, and catalyst peeling. The electrode consists of a switch control module, OER and ORR catalysis layers, and an ion conductive | electronic insulating membrane. The electrode shows an ultralow energy efficiency decay rate and enables a high energy efficiency in zinc-air batteries.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

Syngas-to-C2 oxygenates over the inverse Mo6C4/Cu catalyst: Identifying the role of synergistic effect

Wantong Zhao, Xuebai Lan, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: In this study, the inverse Mo6C4/Cu catalyst is modeled and predicted to promote C2 oxygenates formation in syngas transformation. The results show that the inverse Mo6C4/Cu catalyst greatly improves catalytic performance and facilitates C2 oxygenate production compared to previous catalysts. This is attributed to the synergistic effect between Mo6C4 cluster with Cu catalyst, which easily activates CO to produce CH2 monomer and facilitates CO insertion into CH2 to CH2CO.

APPLIED SURFACE SCIENCE (2023)

Article Energy & Fuels

Simultaneous removal of NO and SO2 by Fe(II)/peracetic acid oxidation system: Operating conditions, removal efficiency and removal mechanism

Kunpeng Li, Hui Hu, Maohong Fan, Mi Zhang, Zhongming Chen, Ruibin Lv, Hao Huang

Summary: An advanced oxidation process (AOPs) using Fe(II) activated peracetic acid (PAA) was investigated for the simultaneous removal of SO2 and NO from flue gas. The maximum removal efficiencies obtained were 92.3% for NO and 99.5% for SO2 under optimal conditions. Reactive oxidizing species and organic radicals were generated in the Fe(II)/PAA system, with organic radicals confirmed to be the major factors affecting NO oxidation. The main products of SO2 and NO removal were identified as SO42- and NO3-.
Review Chemistry, Multidisciplinary

Electrospun Carbon Nanofibers and Their Applications in Several Areas

Tongtong Wang, Zhe Chen, Weibo Gong, Fei Xu, Xin Song, Xin He, Maohong Fan

Summary: Carbon nanofibers (CNFs) have diverse applications in sensor manufacturing, electrochemical catalysis, and energy storage. Electrospinning is a powerful commercial large-scale production technique for CNFs due to its simplicity and efficiency. This paper discusses the working theory of manufacturing electrospun CNFs, current efforts in upgrading CNF properties, and the corresponding applications. Future development of CNFs is also discussed.

ACS OMEGA (2023)

Article Chemistry, Physical

C2H2 Semi-hydrogenation over S-modified PdM IMCs: Tuning catalytic performance by surface S Atom, and metal M type and ratio

Yueyue Wu, Xinyi Guo, Xiufeng Shi, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: This study investigates the catalytic performance of a series of S-modified PdM IMCs with different M types (Cu, Ag and Au) and ratios (1: 1, 3: 1 and 1: 3) in C2H2 semi-hydrogenation using DFT calculations and microkinetic modeling. The results show that the catalytic performance strongly depends on the space region of metal active site and the electronic properties induced by S atoms and the M type and ratio. Only S/Pd1Ag1 and S/Pd1Au1 exhibit higher H2 dissociation activity, C2H4 selectivity and production activity, and can effectively inhibit the formation of green oil.

APPLIED SURFACE SCIENCE (2023)

Article Energy & Fuels

Rational design and reduction kinetics of efficient Ce-Co oxygen carriers for chemical looping reforming of methane

Weixiang Zhang, Lina Zhang, Sijia Pei, Jiarui Wang, Dawei Liu, Xiaoxun Ma, Maohong Fan, Long Xu

Summary: One of the most significant topics in chemical looping reforming technology is the design and preparation of appropriate oxygen carriers with high reactivity and excellent stability. This study focuses on the chemical looping reforming of methane using cobalt-doped Ce-based oxygen carriers synthesized via the solution combustion method with the assistance of coconut shell. The introduction of cobalt decreases the crystallite size, increases oxygen vacancy concentration and lattice oxygen mobility, and the addition of coconut shell further enhances these positive changes and the interaction between Ce and Co.
Editorial Material Multidisciplinary Sciences

Direct synthesis of urea from carbon dioxide and ammonia

Jie Ding, Runping Ye, Yanghe Fu, Yiming He, Ye Wu, Yulong Zhang, Qin Zhong, Harold H. Kung, Maohong Fan

Summary: Urea, a crucial nitrogen fertilizer, plays a vital role in meeting global food demand. However, its current production method is energy-intensive and environmentally unfriendly. In this commentary article, the authors propose strategies to address and overcome these challenges.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Physical

Enabling Low-Temperature Methanol Activation via Lattice Oxygen Induced Cu-O-Cr Catalysis

Zhao Sun, Shufan Yu, Sam Toan, Rufat Abiev, Maohong Fan, Zhiqiang Sun

Summary: In this study, CuCr2O4-based catalytic oxygen carriers were designed for low-temperature methanol reforming. The activation of methanol at relatively low temperatures was achieved through the reinforcement of the Cu-O-Cr structure and the induction of highly reactive lattice oxygen. The hydrogen production rate was significantly increased by 53.2% with the application of CuCr2O4-based catalytic oxygen carriers. Furthermore, the Cu-O-Cr structure demonstrated satisfactory cyclic stability.

ACS CATALYSIS (2023)

Article Energy & Fuels

Enhancement of catalytic activity of PAl-NaX catalyst for side-chain alkylation of toluene with methanol: Effects of dehydrogenation component Cu

Chengda Li, Yueli Wen, Bin Wang, Maohong Fan, Wenlong Liu, Zheng Cui, Wei Huang

Summary: Activation and desorption of hydrogen in toluene methyl is the rate-limiting step for side-chain alkylation of toluene with methanol. In this study, two dehydrogenation strategies were employed to enhance catalytic performance by introducing Cu as a dehydrogenation component in PAl-NaX catalyst and adjusting the acid-base properties through varying NaOH loading. The relationship between the percentage of acid-base sites, low valence Cu species, and catalytic performance was investigated using various characterization techniques and ternary regression analysis. The results showed that Cu, especially low valence Cu species, promoted the selectivity of side-chain alkylation products to some extent, but base sites played a more critical role in enhancing selectivity.
Article Chemistry, Physical

Unraveling the Surface State Evolution of IrO2 in Ethane Chemical Looping Oxidative Dehydrogenation

Lulu Ping, Yuan Zhang, Baojun Wang, Maohong Fan, Lixia Ling, Riguang Zhang

Summary: Based on favorable thermodynamics and coking resistance, chemical looping oxidative dehydrogenation (CL-ODH) of ethane over IrO2 catalyst was studied. Two extreme states of the IrO2 surface structure, S-IrO2 and R-IrO2, were considered. It was found that the mechanisms of ethane dehydrogenation over S-IrO2 and R-IrO2 catalysts were different. The present study contributes to the understanding of ethane CL-ODH over metal oxide catalysts and provides valuable insights for process optimization and catalyst development.

ACS CATALYSIS (2023)

Article Chemistry, Multidisciplinary

Boosting Low-Temperature CO2 Hydrogenation over Ni-based Catalysts by Tuning Strong Metal-Support Interactions

Runping Ye, Lixuan Ma, Xiaoling Hong, Tomas Ramirez Reina, Wenhao Luo, Liqun Kang, Gang Feng, Rongbin Zhang, Maohong Fan, Riguang Zhang, Jian Liu

Summary: This study presents a strategy to enhance the low-temperature CO2 activation through regulating the local electron density of active sites. An optimized Ni/ZrO2 catalyst exhibits excellent performance for CO2 methanation, with high CO2 conversion, CH4 selectivity, and stability, making it one of the best Ni-based catalysts for CO2 methanation to date.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

C2H2 semi-hydrogenation over N-doped graphene supported diatomic metal catalysts: Unraveling the roles of metal type and its coordination environment in tuning catalytic performance

Xuebai Lan, Mifeng Xue, Baojun Wang, Maohong Fan, Riguang Zhang

Summary: This study investigates the performance of diatomic metal catalysts in the semi-hydrogenation of C2H2 by constructing different types of DACs and tuning their coordination environments. The results show that CoCu@N6V4-11, CoPd@N6V4-11, CoNi@N6V4-11, and CoPt@N6V4-11 DACs exhibit superior C2H4 selectivity, formation activity, and stability. Introducing a second metal can significantly improve C2H4 selectivity while maintaining high C2H4 formation activity.

APPLIED SURFACE SCIENCE (2023)

Article Chemistry, Physical

Enhanced moisture sorption through regulated MIL-101(Cr) synthesis and its integration onto heat exchangers

Mei Gui Vanessa Wee, Amutha Chinnappan, Runxin Shang, Poh Seng Lee, Seeram Ramakrishna

Summary: Cooling processes, from residences to industries, require a lot of energy and are essential. This study introduces MIL-101(Cr), a new desiccant, to heat exchangers for more efficient cooling. By improving the synthesis method and using a special binder, the MIL-101(Cr)-coated heat exchanger shows improved water uptake capacity and lower regeneration temperature.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synthesis of completely solvent-free biomedical waterborne polyurethane with excellent mechanical property retention and satisfactory water absorption

Ao Zhen, Guanyu Zhang, Ao Wang, Feng Luo, Jiehua Li, Hong Tan, Zhen Li

Summary: In this study, a solvent-free microemulsion method was used to synthesize waterborne polyurethane (WPU) material with high retention of mechanical properties and satisfactory water absorption rates. The material showed excellent biocompatibility and has broad application potential in the field of biomedicine.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent progress in eutectic gallium indium (EGaIn): surface modification and applications

Wensong Ge, Rui Wang, Xiaoyang Zhu, Houchao Zhang, Luanfa Sun, Fei Wang, Hongke Li, Zhenghao Li, Xinyi Du, Huangyu Chen, Fan Zhang, Huifa Shi, Huiqiang Hu, Yongming Xi, Jiankang He, Liang Hu, Hongbo Lan

Summary: This paper reviews the research on the surface tension of eutectic gallium-indium alloys (EGaIn) in the field of stretchable electronics. It covers the principles of oxide layer formation, factors influencing surface tension, and methods for surface modification of liquid metals. The paper also discusses the applications of EGaIn surface modification in different fields and highlights the challenges still faced and the future outlook.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Nature-inspired sustainable solar evaporators for seawater desalination

Xiang Song, Lianghao Jia, Zhengen Wei, Tao Xiang, Shaobing Zhou

Summary: This paper provides an overview of the application, preparation, and role of biomimetic structures in solar evaporators with improved evaporation rate and lifetime.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Synergistic carrier and phonon transport advance Ag dynamically-doped n-type PbTe thermoelectrics via Mn alloying

Wei Yuan, Qian Deng, Dong Pan, Xiang An, Canyang Zhao, Wenjun Su, Zhengmin He, Qiang Sun, Ran Ang

Summary: Optimizing the performance of n-type PbTe thermoelectric materials is crucial for practical applications. Dynamic doping has emerged as an effective method to improve the performance of n-type PbTe by optimizing the carrier concentration. This study demonstrates the significance of Mn alloying in enhancing the performance of Ag-doped n-type PbTe by creating a hierarchical structure to suppress thermal transport and improving the Seebeck coefficient.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Review Chemistry, Physical

Recent advances of bifunctional electrocatalysts and electrolyzers for overall seawater splitting

Xiaoyan Wang, Meiqi Geng, Shengjun Sun, Qian Xiang, Shiyuan Dong, Kai Dong, Yongchao Yao, Yan Wang, Yingchun Yang, Yongsong Luo, Dongdong Zheng, Qian Liu, Jianming Hu, Qian Wu, Xuping Sun, Bo Tang

Summary: This review provides a comprehensive analysis of the progress and challenges in the field of bifunctional electrocatalysts and efficient electrolyzers for seawater splitting. It summarizes recent advancements and proposes future perspectives for highly efficient bifunctional electrocatalysts and electrolyzers.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Sequence-dependent self-assembly of supramolecular nanofibers in periodic dynamic block copolymers

Jason K. Phong, Christopher B. Cooper, Lukas Michalek, Yangju Lin, Yuya Nishio, Yuran Shi, Huaxin Gong, Julian A. Vigil, Jan Ilavsky, Ivan Kuzmenko, Zhenan Bao

Summary: Dynamic block copolymers (DBCPs) combine the phase separation of traditional block copolymers with the supramolecular self-assembly of periodic dynamic polymers, resulting in the spontaneous self-assembly of high aspect ratio nanofibers with well-ordered PEG and PDMS domains. DBCPs with a periodic block sequence exhibit superior properties compared to those with a random sequence, including delayed onset of terminal flow and higher ionic conductivity values.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Moisture-triggered proton conductivity switching in metal-organic frameworks: role of coordinating solvents

Hong Kyu Lee, Yasaswini Oruganti, Jonghyeon Lee, Seunghee Han, Jihan Kim, Dohyun Moon, Min Kim, Dae-Woon Lim, Hoi Ri Moon

Summary: This study reports the moisture-triggered proton-conductivity switching behavior in Zn5FDC MOFs induced by the presence and absence of coordinating solvents, which illustrates the significant role of coordinating solvents in conductivity variation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Spiro[fluorene-9,9′-xanthene]-based hole shuttle materials for effective defect passivation in perovskite solar cells

Bommaramoni Yadagiri, Sanjay Sandhu, Ashok Kumar Kaliamurthy, Francis Kwaku Asiam, Jongdeok Park, Appiagyei Ewusi Mensah, Jae-Joon Lee

Summary: The molecular engineering of the interface modulator between the perovskite and hole transporting material is crucial for achieving satisfactory performance and stability of perovskite solar cells. In this study, cruciform-shaped dual functional organic materials were employed as surface passivation and hole transporting interfacial layers in perovskite solar cells. The use of these materials significantly improved the power conversion efficiency of the solar cells.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Joaquin Martinez-Ortigosa, Reisel Millan, Jorge Simancas, Manuel Hernandez-Rodriguez, J. Alejandro Vidal-Moya, Jose L. Jorda, Charlotte Martineau-Corcos, Vincent Sarou-Kanian, Mercedes Boronat, Teresa Blasco, Fernando Rey

Summary: This study investigates the synthesis of all-silica RTH zeolites using triisopropyl(methyl)phosphonium as the organic SDA. The results show the formation of two distinct crystalline phases under different synthesis conditions, with fluoride bonding to different silicon sites. It demonstrates the possibility of controlling the placement of fluoride in RTH zeolites through synthesis conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Heterostructured MoP/CoMoP2 embedded in an N, P-doped carbon matrix as a highly efficient cooperative catalyst for pH-universal overall water splitting

Luyao Zheng, Cong Liu, Wenbiao Zhang, Boxu Gao, Tianlan Yan, Yahong Zhang, Xiaoming Cao, Qingsheng Gao, Yi Tang

Summary: This study successfully improves the efficiency and stability of water splitting by constructing a heterostructured electrocatalyst. The catalyst shows extraordinary performance and could offer an effective approach for the sustainable production of hydrogen.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Lanthanide contraction effect on the alkaline hydrogen evolution and oxidation reactions activity in platinum-rare earth nanoalloys

Carlos A. Campos-Roldan, Raphael Chattot, Frederic Pailloux, Andrea Zitolo, Jacques Roziere, Deborah J. Jones, Sara Cavaliere

Summary: This study systematically evaluated the hydrogen evolution/oxidation reactions on a series of Pt-rare earth nanoalloys in alkaline media, and identified the effect of the lanthanide contraction. The experimental results revealed that the chemical nature of the rare earth modulates the adsorption and mobility of oxygenated-species, enhancing the kinetics of the reactions.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Correlating the structural transformation and properties of ZIF-67 during pyrolysis, towards electrocatalytic oxygen evolution

Sara Frank, Mads Folkjaer, Mads L. N. Nielsen, Melissa J. Marks, Henrik S. Jeppesen, Marcel Ceccato, Simon J. L. Billinge, Jacopo Catalano, Nina Lock

Summary: This study investigates the thermal decomposition of ZIF-67 and its correlation with structural evolution and electrocatalytic performance. The researchers used in situ X-ray absorption spectroscopy and total scattering techniques to analyze the process. They found that disorder emerges at lower temperatures and that extending the pyrolysis process can result in materials with superior electrochemical properties.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

SiO2 assisted Cu0-Cu+-NH2 composite interfaces for efficient CO2 electroreduction to C2+ products

Zi-Yang Zhang, Hao Tian, Han Jiao, Xin Wang, Lei Bian, Yuan Liu, Nithima Khaorapapong, Yusuke Yamauchi, Zhong-Li Wang

Summary: By constructing Cu-0-Cu+-NH2 composite interfaces with the assistance of SiO2, the electrochemical CO2 reduction reaction (CO2RR) achieves high Faraday efficiency and current density for C2+ production, improving the productivity of carbon cycle.

JOURNAL OF MATERIALS CHEMISTRY A (2024)

Article Chemistry, Physical

Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution

Ting Wang, Ruijuan Zhang, Pengda Zhai, Mingjie Li, Xinying Liu, Chaoxu Li

Summary: This study successfully exfoliated COFs using a simple electrochemical method, which resulted in improved photocatalytic performance for COFs and enriched the fabrication approach of COF exfoliation.

JOURNAL OF MATERIALS CHEMISTRY A (2024)