4.4 Article Proceedings Paper

Electron transport in single and multicomponent n-type oxide semiconductors

期刊

THIN SOLID FILMS
卷 516, 期 7, 页码 1322-1325

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2007.03.158

关键词

oxides; conductivity; nanostructures; electrical properties; order and disorder semiconductors

向作者/读者索取更多资源

The electron transport in n-type polycrystalline zinc oxide, nanocrystalline Zinc-Gallium-Oxygen and amorphous Indium-Zinc-Oxygen systems produced by rf magnetron sputtering at room temperature, under different oxygen partial pressure were investigated. It was found that the carrier transport is not band tail limited, being governed by metal cations irrespective to the film's structure. The highest net room temperature electron mobility was achieved on the amorphous films and noticed that for the single component oxides the mobility decreases as the carrier concentration increases, while the reverse behaviour was observed for the multicomponent oxides, independently of their structure. These behaviours are related to the role that negative charge defects in excess of 10(10) cm(-2) generated on multicomponent oxides have on carriers scattering and so on their electronic performances. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Alkali-Doped Nanopaper Membranes Applied as a Gate Dielectric in FETs and Logic Gates with an Enhanced Dynamic Response

Diana Gaspar, Jorge Martins, Jose Tiago Carvalho, Paul Grey, Rogerio Simoes, Elvira Fortunato, Rodrigo Martins, Luis Pereira

Summary: The market for flexible, hybrid, and printed electronic systems is uncertain, but these systems are emerging daily, allowing for devices and systems that can be folded and stored in pockets. Cellulose-based modified nanopapers were developed as a physical support and gate dielectric layer for recyclable field-effect transistors (FETs). Impregnation of the nanopapers with sodium ions enabled low voltage FETs (<3 V), with high mobility (>10 cm2 V-1 s-1), current modulation (>105), and improved dynamic response. These transistors were successfully implemented into simple circuits such as inverters, showing clear discrimination between logic states. Besides improved electrical performance, these devices are a promising alternative for reliable, sustainable, and flexible electronics, even under stress conditions.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Energy & Fuels

Sol-Gel Derived Di-Ureasil Based Ormolytes for Electrochromic Devices

Paulo Joaquim Nunes, Rui Francisco Pinto Pereira, Sonia Pereira, Maria Manuela Silva, Elvira Fortunato, Veronica de Zea Bermudez, Mariana Fernandes

Summary: Two di-ureasils with oxyethylene segments were prepared by the sol-gel method, doped with ionic liquid and lithium salt. The resulting films were translucent, flexible, hydrophobic, and had low surface roughness. The optimized sample exhibited good ionic conductivity and was used in prototype electrochromic devices with promising performance.

ENERGIES (2023)

Review Medicine, General & Internal

Leveraging the future of diagnosis and management of diabetes: From old indexes to new technologies

Maria Joao Meneses, Rita Susana Patarrao, Tomas Pinheiro, Ines Coelho, Nuno Carrico, Ana Carolina Marques, Artur Romao, Joao Nabais, Elvira Fortunato, Joao Filipe Raposo, Maria Paula Macedo

Summary: Diabetes is a heterogeneous and multifactorial disease, and besides glycemia and glycated hemoglobin, the evaluation of other biochemical parameters is necessary for better diagnosis and management. Indexes of insulin secretion, sensitivity/resistance, and metabolism have been developed to provide a more comprehensive view of individual metabolic states. New technologies, such as sensors and software applications, have the potential to improve diabetes diagnosis and management, empowering patients and simplifying disease management.

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION (2023)

Article Nanoscience & Nanotechnology

Electrospun Stacked Dual-Channel Transistors with High Electron Mobility Using a Planar Heterojunction Architecture

Bo He, Gang He, Shanshan Jiang, Jiangwei Liu, Elvira Fortunato, Rodrigo Martins

Summary: Thin-film transistors based on metal oxide semiconductors are widely used in driving low-cost backplanes of active matrix liquid crystal displays. Solution-based 1D nanofiber networks have been proven to be a simpler and higher-throughput approach for transistor fabrication. Double channel heterojunction transistors composed of In2O3 and ZnO layers show high electron mobility and operational stability, which can be optimized by adjusting the stacking order and density of the layers.

ADVANCED ELECTRONIC MATERIALS (2023)

Article Chemistry, Analytical

Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization

Beatriz J. Coelho, Joana P. Neto, Barbara Sieira, Andre T. Moura, Elvira Fortunato, Rodrigo Martins, Pedro V. Baptista, Rui Igreja, Hugo Aguas

Summary: Microfluidic-based platforms are powerful tools for chemical and biological assays. The fusion of different microfluidic technologies has the potential to overcome limitations and enhance their strengths.

SENSORS (2023)

Article Polymer Science

Parylene C as a Multipurpose Material for Electronics and Microfluidics

Beatriz J. Coelho, Joana V. Pinto, Jorge Martins, Ana Rovisco, Pedro Barquinha, Elvira Fortunato, Pedro V. Baptista, Rodrigo Martins, Rui Igreja

Summary: Poly(p-xylylene) derivatives, also known as Parylenes, have been extensively studied for their thermal, structural, and electrical properties. This article explores the application of Parylene C in various electronic devices, including transistors, capacitors, and digital microfluidic devices. The results show that Parylene C can be used as a dielectric, substrate, and encapsulation layer in transistors, producing high performance devices with steep transfer curves, low gate leak currents, and good mobilities. The study also demonstrates the functionality of Parylene C in MIM structures and its capability to enable faster droplet motion and nucleic acid amplification reactions in DMF devices.

POLYMERS (2023)

Article Chemistry, Multidisciplinary

Microwave Synthesis of Visible-Light-Activated g-C3N4/TiO2 Photocatalysts

Maria Leonor Matias, Ana S. Reis-Machado, Joana Rodrigues, Tomas Calmeiro, Jonas Deuermeier, Ana Pimentel, Elvira Fortunato, Rodrigo Martins, Daniela Nunes

Summary: A graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) heterostructure was synthesized through a fast and simple microwave-assisted method, and it showed excellent photocatalytic activity for the degradation of a recalcitrant azo dye under solar simulating light. The 30% g-C3N4/TiO2 heterostructure exhibited the best performance.

NANOMATERIALS (2023)

Article Nanoscience & Nanotechnology

Accurate determination of band tail properties in amorphous semiconductor thin film with Kelvin probe force microscopy

Luca Fabbri, Camilla Bordoni, Pedro Barquinha, Jerome Crocco, Beatrice Fraboni, Tobias Cramer

Summary: The disordered microscopic structure of amorphous semiconductors leads to the formation of band tails in the density of states (DOS), which greatly affect charge transport properties. Kelvin Probe Force Microscopy (KPFM) is a powerful technique to measure the DOS, but lacks a model to interpret KPFM spectroscopy data on amorphous semiconductors of finite thickness. In this study, an analytical solution to the Poisson equation is provided for a metal-insulator-semiconductor junction interacting with the atomic force microscope tip, allowing for the fitting of experimental data and obtaining DOS parameters. This method was demonstrated on Indium-Gallium-Zinc Oxide (IGZO) thin-film transistors (IGZO-TFTs) and showed good agreement with values obtained from photocurrent spectroscopy.

APL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Screen-printed, flexible, and eco-friendly thermoelectric touch sensors based on ethyl cellulose and graphite flakes inks

J. Figueira, R. M. Bonito, J. T. Carvalho, E. M. F. Vieira, C. Gaspar, Joana Loureiro, J. H. Correia, E. Fortunato, R. Martins, L. Pereira

Summary: Flexible thermal touch sensors were produced by optimizing ethyl cellulose and graphite flakes inks for screen-printing. The best electrical-TE output combination was achieved by printing two layers of the ink with 20 wt% of graphite on an office paper substrate. The results showed that the screen-printed graphite-based inks are highly suitable for flexible TE sensing applications.

FLEXIBLE AND PRINTED ELECTRONICS (2023)

Review Engineering, Electrical & Electronic

Recent progress in optoelectronic memristors for neuromorphic and in-memory computation

Maria Elias Pereira, Rodrigo Martins, Elvira Fortunato, Pedro Barquinha, Asal Kiazadeh

Summary: Neuromorphic computing is gaining popularity as a replacement for outdated technology in conventional computing systems. Artificial neural networks composed of memristor crossbars in hardware offer power, cost, and area-efficient in-memory computing and storage. Optoelectronic memristors (OEMs) can control resistive switching (RS) through both optical and electronic signals, solving crosstalk issues and providing a high-speed non-destructive method. This review summarizes recent advances in inorganic OEMs, analyzing the device structure and assessing their potential applications in logic gates, artificial neural networks, and artificial visual systems with consideration for their performance.

NEUROMORPHIC COMPUTING AND ENGINEERING (2023)

Article Chemistry, Analytical

A simple polystyrene microfluidic device for sensitive and accurate SERS-based detection of infection by malaria parasites

Maria Joao Oliveira, Soraia Caetano, Ana Dalot, Filipe Sabino, Tomas R. Calmeiro, Elvira Fortunato, Rodrigo Martins, Eulalia Pereira, Miguel Prudencio, Hugh J. Byrne, Ricardo Franco, Hugo Aguas

Summary: Early and accurate detection of pathogenic microorganisms is crucial for diagnosis and patient outcomes. The combination of a polystyrene-based microfluidic device and Surface-Enhanced Raman Spectroscopy shows excellent sensitivity and specificity in detecting malaria. The system can be easily adapted for other pathogens and has the potential for early diagnosis of infectious diseases.

ANALYST (2023)

暂无数据