4.7 Article

Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene CoFe2O4 nancomposite modified carbon paste electrode

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 203, 期 -, 页码 909-918

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2014.07.031

关键词

Electrochemical sensor; Chemically modified carbon paste electrode; Magnetic nanoparticles; Graphene; Simultaneous determination of codeine and acetaminophena

资金

  1. Research Council of Bu-Ali Sina University
  2. Center of Excellence in Development of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS)

向作者/读者索取更多资源

A nanocomposite of graphene (Gr) and CoFe2O4 nanoparticles was synthesized with a facile preparation method in order to fabricate a modified carbon paste electrode. The morphology and structureof Gr/CoFe2O4 nanocomposite were investigated by scanning electron microscopy (SEM), and X-raydiffraction (XRD). Also, electrochemical characterization of the nanocomposite was demonstrated withelectrochemical impedance spectroscopy. Based on the synergistic effect of Gr and CoFe2O4 nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (Ac) and codeine (Cod) was successfully fabricated. The linearity ranged from 0.03 to 12.0 mu M for both Ac and Cod. Low detection limits of 0.025 mu Mfor Ac and 0.011 mu M for Cod were achieved based on three times of the standard deviation of the blankover sensitivity (3 s/m). The proposed method was free from interference effects of glucose, ascorbic acid, caffeine, naproxen, alanine, phenylalanine, glycine, and others. No electrode surface fouling was observedduring successive scans. High stability, high sensitivity, and low detection limit made the proposed electrode applicable for the analysis of various real samples. Moreover, its practical applicability was reliableand desirable in biological fluids and pharmaceutical samples analysis. (C) 2014 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Electrochemistry

Self-supporting porous S-doped graphitic carbon nitride as a multifunctional support of Au catalyst: Application to highly sensitive and selective determination of arsenic (III) in a wide range of pH

Somaye Ebrahimi, Abbas Afkhami, Tayyebeh Madrakian, Zahra Amouzegar

Summary: Heteroatom-doped carbon nitride (C3N4) materials were investigated as supports for Au nanoparticles, which were anchored on sulfur-doped carbon nitride nanosheets (AuNPs@SCNN) and used as a catalyst for arsenic electroreduction. The synthesis of novel SCNN was achieved through a simple thermally induced copolymerization route using ammonium persulfate (APS) as a sulfur source. The integration of SCNN with AuNPs improved the assembly quality and interface, leading to enhanced catalytic activity. The composite (AuNPs@SCNN/GCE) modified glassy carbon electrode exhibited enhanced electrochemical responses for the electrocatalytic reduction of arsenic.

ELECTROCHIMICA ACTA (2023)

Article Chemistry, Analytical

Utilizing inner filter effect in resonance Rayleigh scattering technique: a case study with silver nanocubes as RRS probe and several analytes as absorbers

Rasoul Gheitaran, Abbas Afkhami, Tayyebeh Madrakian

Summary: The mechanism of the inner filter effect (IFE) can be effectively utilized in the design of innovative IFE-based sensors using resonance Rayleigh scattering (RRS) technique. Silver nanocubes (Ag NCs) with tunable extinction spectra were employed as RRS probes, and three typical analytes, doxorubicin (DOX), sunitinib (SUN), and Alizarin Red S (ARS), were considered. The results demonstrated the feasibility of the newly developed IFE mechanism as an attractive analytical technique for measuring different analytes.

MICROCHIMICA ACTA (2023)

Article Chemistry, Analytical

Combination of an aptamer-based immunochromatography assay with nanocomposite-modified screen-printed electrodes for discrimination and simultaneous determination of tryptophan enantiomers

Hosein Khoshsafar, Hasan Bagheri, Pegah Hashemi, Mohammad Mahdi Bordbar, Tayyebeh Madrakian, Abbas Afkhami

Summary: In this study, the detection of tryptophan enantiomers was achieved using immunochromatographic assays and electrochemical methods. The sensor response showed a good linear relationship with tryptophan concentration in the range of 0.08-20.0 μM, with a detection limit of 0.03 μM. The sensor is stable and not susceptible to interfering species, making it a reliable tool for determining tryptophan levels in biological samples and diagnosing specific diseases.

TALANTA (2023)

Article Chemistry, Analytical

High-performance strategy for the construction of electrochemical biosensor for simultaneous detection of miRNA-141 and miRNA-21 as lung cancer biomarkers

Ali Khodadoust, Navid Nasirizadeh, Seyed Morteza Seyfati, Ramezan Ali Taheri, Mostafa Ghanei, Hasan Bagheri

Summary: In this study, a novel nano-biosensor has been developed using dual signal-labeled hairpin-structured DNA-based probes. The biosensor can sensitively and simultaneously detect miRNA-141 and miRNA-21, and it is resistant to interference from environmental factors.

TALANTA (2023)

Article Electrochemistry

Electrochemical determination of cyanuric acid using the signal suppression of melamine on an overoxidized Poly-(para-aminophenol) coated glassy carbon electrode

Samaneh Hashemi, Abbas Afkhami, Mahdie Kamalabadi, Tayyebeh Madrakian, Arash Ghoorchian, Vahid Ghasemzadeh-Mohammadi

Summary: We reported a novel electrochemical sensor for the indirect determination of cyanuric acid (CA) using the complex formation between CA and melamine (MEL) for the first time. The sensor utilized the electrochemical conversion of MEL to electroactive polymelamine, with the decline in current intensity upon the addition of CA serving as the sensor response. A calibration curve was constructed using square wave voltammetry, with a limit of detection of 80.28 mu mol L-1. The proposed method showed excellent recovery range (91.2-101.0%) for real sample analysis.

JOURNAL OF APPLIED ELECTROCHEMISTRY (2023)

Article Pharmacology & Pharmacy

Dual stimuli-responsive gelatin-based hydrogel for pH and temperature-sensitive delivery of curcumin anticancer drug

Mohadese Mahdian, Soheila Akbari Asrari, Mazaher Ahmadi, Tayyebeh Madrakian, Nahid Rezvani Jalal, Abbas Afkhami, Mohammadreza Moradi, Leila Gholami

Summary: We report on the synthesis and characterization of a dual stimuli-responsive hydrogel for pH and temperature-sensitive delivery of curcumin (CUR) anticancer drug. The release of CUR from the hydrogel was higher at acidic pH values, and the hydrogel remained stable at 37 degrees C. To enable thermal responsivity, polydopamine nanoparticles were embedded in the hydrogel. The GGPDNCs hydrogel is engineered to respond to both pH and temperature stimuli.

JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY (2023)

Article Chemistry, Medicinal

Transdermal Delivery of Insulin Using Combination of Iontophoresis and Deep Eutectic Solvents as Chemical Penetration Enhancers: In Vitro and in Vivo Evaluations

Soroush Khamoushian, Tayyebeh Madrakian, Abbas Afkhami, Arash Ghoorchian, Saeid Ghavami, Kamran Tari, Mohammad Reza Samarghandi

Summary: This study introduces deep eutectic solvent (DESs) as novel chemical penetration enhancers (CPEs) for transdermal iontophoresis (IP) delivery of insulin (INS) across rat skin, both in vitro and in vivo.

JOURNAL OF PHARMACEUTICAL SCIENCES (2023)

Article Chemistry, Analytical

Applicability of a synthesized melamine based covalent organic framework as a novel ionophore for the potentiometric determination of mercury (II): Computational and experimental studies

Mohammad Reza Jalali Sarvestani, Tayyebeh Madrakian, Abbas Afkhami, Beheshteh Ajdari

Summary: In this research, the complexation of a newly synthesized covalent organic framework (schiff base network1) with different cations, including Hg2+, was studied. The results showed that schiff base network1 had a stronger interaction with Hg2+ compared to other cations, making it a potential ionophore for the development of a Hg2+ potentiometric sensor. A Hg2+ selective PVC membrane coated graphite electrode was successfully created using schiff base network1, which exhibited excellent response and sensitivity for the detection of Hg2+ in a wide range of concentrations. The electrode also demonstrated good performance in non-aqueous environments and had a long lifespan.

MICROCHEMICAL JOURNAL (2023)

Article Chemistry, Analytical

Sensitive and selective impedimetric determination of TNT using RSM-CCD optimization

Morteza Soltani-Shahrivar, Abbas Afkhami, Tayyebeh Madrakian, Nahid Rezavani Jalal

Summary: In this study, an inexpensive, simple, sensitive, and selective electrochemical TNT sensor was designed and constructed based on the formation of a Meisenheimer complex between magnetic multiwalled carbon nanotubes modified with aminopropyl triethoxysilane (MMWCNTs @ APTES) and TNT. The sensor was able to accurately measure TNT in various water samples.

TALANTA (2023)

Article Food Science & Technology

Simultaneous electrochemical determination of Pb2+ and Cd2+ ions in food samples by a silver nanoparticle/COF composite modified glassy carbon electrode

Mohammad Reza Jalali Sarvestani, Tayyebeh Madrakian, Abbas Afkhami

Summary: A composite of silver nanoparticle-embedded covalent organic framework (Ag@COF) was synthesized and characterized. It was used as an electrocatalytic modifier for sensitive and selective detection of Pb2+ and Cd2+. The optimized electrochemical sensor showed linear response over a wide concentration range and low detection limits for both Pb2+ and Cd2+ ions. It was successfully applied to determine these ions in different edible specimens.

JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION (2023)

Review Oncology

Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies

Ali Zarrabi, David Perrin, Mahboubeh Kavoosi, Micah Sommer, Serap Sezen, Parvaneh Mehrbod, Bhavya Bhushan, Filip Machaj, Jakub Rosik, Philip Kawalec, Saba Afifi, Seyed Mohammadreza Bolandi, Peiman Koleini, Mohsen Taheri, Tayyebeh Madrakian, Marek J. Los, Benjamin Lindsey, Nilufer Cakir, Atefeh Zarepour, Kiavash Hushmandi, Ali Fallah, Bahattin Koc, Arezoo Khosravi, Mazaher Ahmadi, Susan Logue, Gorka Orive, Stevan Pecic, Joseph W. Gordon, Saeid Ghavami

Summary: Rhabdomyosarcoma is a rare cancer that affects skeletal muscle, primarily in children and young adults. The treatment strategies for this disease include multi-agent chemotherapies following surgical resection and radiotherapy. This review provides a detailed clinical understanding of rhabdomyosarcoma, including its classification, diagnosis, and treatment strategies. The impact of apoptosis, macro-autophagy, and the unfolded protein response on chemotherapy response is discussed. Additionally, the use of in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models for screening future therapeutic approaches and promoting muscle regeneration is explored.

CANCERS (2023)

Article Chemistry, Analytical

MEMS sensor based on MOF-derived WO3-C/In2O3 heterostructures for hydrogen detection

Mengmeng Guo, Na Luo, Yueling Bai, Zhenggang Xue, Qingmin Hu, Jiaqiang Xu

Summary: A porous heterostructure WO3-C/In2O3 was designed and prepared for a miniature H2 sensor, which showed higher response value, lower operating temperature, fast response-recovery speed, and low limit of detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Signal amplification strategy by chitosan-catechol hydrogel modified paper electrode for electrochemical detection of trace arsenite

Feng Hu, Hui Hu, Yuting Li, Xiaohui Wang, Xiaowen Shi

Summary: Arsenic contamination in water bodies is a significant health risk. This study developed a chitosan-catechol modified electrode for rapid and accurate detection of trace amounts of arsenic. The modified electrode demonstrated good detection capability and resistance to ionic interference, making it suitable for in situ detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A buffering fluorogenic probe for real-time lysosomal pH monitoring

Yantao Zhang, Qian Liu, Tao Tian, Chunhua Xu, Pengli Yang, Lianju Ma, Yi Hou, Hui Zhou, Yongjun Gan

Summary: In this study, a lysosome-targeting buffering fluorogenic probe (Lyso-BFP) was designed and synthesized, demonstrating excellent photostability, pH specificity, and responsiveness to lysosomal acidification in living cells. The performance of Lyso-BFP in pH sensing was attributed to the inhibition of the photo-induced electron transfer process. Lyso-BFP allowed for wash-free imaging and long-term real-time monitoring of lysosome pH changes based on its off-on fluorescence behavior and buffer strategy.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Rational design of α-glucosidase activated near-infrared fluorescent probe and its applications in diagnosis and treatment of diabetes

Wei Cai, Wenbo Sun, Jiayue Wang, Xiaokui Huo, Xudong Cao, Xiangge Tian, Xiaochi Ma, Lei Feng

Summary: In this study, a near-infrared fluorescent probe HCBG was developed for imaging of alpha-GLC. HCBG exhibited excellent selectivity and sensitivity towards alpha-GLC in complex bio-samples, and showed good cell permeability for in situ real-time imaging. Through the high-throughput screening system established by HCBG, a natural alpha-GLC inhibitor was successfully isolated and identified. This study provides a novel fluorescence visualization tool for discovering and exploring the biological functions of diabetes-related gut microbiota, and a high-throughput screening approach for alpha-GLC inhibitor.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Electrochemical immunosensor for the quantification of galectin-3 in saliva

Trey W. Pittman, Xi Zhang, Chamindie Punyadeera, Charles S. Henry

Summary: Heart failure is a growing epidemic and a significant clinical and public health problem. Researchers have developed a portable and affordable diagnostic device for heart failure that can be used at the point-of-care, providing a valid alternative to current diagnostics approaches.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Optical hydrogen peroxide sensor for measurements in flow

Anders O. Tjell, Barbara Jud, Roland Schaller-Ammann, Torsten Mayr

Summary: An optical hydrogen peroxide sensor based on catalytic degradation and the detection of produced oxygen is presented. The sensor offers higher resolution and better sensitivity at lower H2O2 concentrations. By removing O2 from the sample solution, a more sensitive O2 sensor can be used for measurement. The sensor has been successfully applied in a flow-through cell to measure H2O2 concentration in different flow rates.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Engineered vertically-aligned carbon nanotube microarray for self-concentrated SERS detection

Seong Jae Kim, Ji-hun Jeong, Gaabhin Ryu, Yoon Sick Eom, Sanha Kim

Summary: Surface-enhanced Raman spectroscopy (SERS) is a high-sensitivity, label-free detection method with various analytical applications. Researchers have developed a hydrophobic SERS substrate based on engineered carbon nanotube arrays (CNT-SERS) and studied the role of structural design at both micro and nanoscales. The substrate demonstrated controlled self-enrichment capability and enhanced sensitivity, with a significant increase in the SERS signal. The study also proposed a theoretical model and a concentration strategy inspired by plants for analyte deposition on microarrays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Flexible enzyme-like platform based on a 1-D CeVO4/2-D rGO-MCC heterostructure as sensor for the detection of intracellular superoxide anions

Dan Zhao, Renjun Jiang, Xiaoqiang Liu, Subbiah Alwarappan

Summary: In this study, a novel ternary composite material was constructed by assembling cerium vanadate nanorods on reduced graphene oxide-microcrystalline cellulose nanosheets, and it was used for real-time monitoring of the concentration of superoxide anions in vivo. The ternary composite showed excellent conductivity, large surface area, and abundant active sites, leading to a wider linear range, high sensitivity, low detection limit, and fast response time for superoxide anion detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Covalent organic framework enhanced aggregation-induced emission of berberine and the application for detection

Tengfei Wang, Liwen Wang, Guang Wu, Dating Tian

Summary: In this study, a covalent organic framework material TaTp-COF with porous and uniform spheres was successfully prepared via hydrothermal reaction, and it was found to significantly enhance the aggregation-induced emission (AIE) of berberine. The unique emission properties of berberine on TaTp-COF were studied and utilized for the sensitive detection of berberine.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Visualized time-temperature monitoring by triplet-sensitized ratiometric fluorescent nanosensors

Lin Li, Yilei Ding, Lei Xu, Shuoran Chen, Guoliang Dai, Pengju Han, Lixin Lu, Changqing Ye, Yanlin Song

Summary: In this study, a novel TTI based on a ratiometric fluorescent nanosensor is designed, which has the advantages of high accuracy and low cost. Experimental and theoretical investigations confirm its pH responsiveness and demonstrate its good sensitivity and reliability. By monitoring the total volatile basic nitrogen, this TTI can accurately predict food spoilage and can be adaptively modified for different types of food. The TTI based on this nanosensor enables visual monitoring of food quality.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A fluorescent prodrug to fight drug-resistant lung cancer cells via autophagy-driven ferroptosis

Fangju Chen, Xueting Wang, Wei Chen, Chenwen Shao, Yong Qian

Summary: Lung cancer is the second most common malignant tumor worldwide. Drug resistance in lung cancer leads to treatment failure and recurrence in majority of patients. This study developed a fluorescent prodrug that can be activated in cancer cells to release drugs, and its signal can be tracked by imaging. It shows a unique autophagy-driven ferroptosis effect, indicating its potential for targeting drug-resistant cancer cells.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

ZnO quantum dots sensitized ZnSnO3 for highly formaldehyde sensing at a low temperature

Weichao Li, Qiming Yuan, Zhangcheng Xia, Xiaoxue Ma, Lifang He, Ling Jin, Xiangfeng Chu, Kui Zhang

Summary: This study developed a high-performance gas sensor for formaldehyde detection by modifying ZnSnO3 with ZnO QDs and SnO2 QDs. The modified sensor showed improved sensing response and lower working temperature. The presence of ZnO QDs formed rich heterojunctions, increased surface area, and provided oxygen deficiency for formaldehyde sensing reaction, thus enhancing the sensor performance. This research provides an alternative method to enhance the sensing properties of MOS by QDs modification.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Development of highly sensitive plasmonic biosensors encoded with gold nanoparticles on M13 bacteriophage networks

Joung-Il Moon, Eun Jung Choi, Younju Joung, Jin-Woo Oh, Sang-Woo Joo, Jaebum Choo

Summary: A novel nanoplasmonic substrate was developed for biomedical applications, which showed strong hot spots for detecting biomarkers at low concentrations. The substrate, called AuNPs@M13, was made by immobilizing 60 nm gold nanoparticles onto the surface of an M13 bacteriophage scaffold. It demonstrated higher sensitivity and lower limit of detection compared to commercially available assays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Single-atom Cu-attached MOFs as peroxide-like enzymes to construct dual-mode immunosensors for detection of breast cancer typing in serum

Ning Li, Ya Zhang, Ying Xu, Xiaofang Liu, Jian Chen, Mei Yang, Changjun Hou, Danqun Huo

Summary: The molecular subtype of breast cancer guides treatment and drug selection. Invasive tests can promote cancer cell metastasis, so the development of high-performance, low-cost diagnostic tools for cancer prognosis is crucial. Liquid biopsy techniques enable noninvasive, real-time, dynamic, multicomponent, quantitative, and long-term observations at the cellular, genetic, and molecular levels. A Cu-Zr metal-organic framework (MOF) nanoenzyme with monatomic Cu attachment has been synthesized and proven to have high catalytic performance. The sensor constructed using this nanoenzyme shows potential for accurate classification of breast cancer serum samples.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Individually-addressable composite microneedle electrode array by mold-and-place method for glucose detection

Jeongmin Kim, Hyemin Kim, Seunghyun Park, Hyeonaug Hong, Yong Jae Kim, Jiyong Lee, Jaeho Kim, Seung-Woo Cho, Wonhyoung Ryu

Summary: This study presents a method to fabricate independently functioning microneedle (MN) electrodes with narrow intervals for high precision electrochemical sensing. The optimized mixture of photocurable polymer and single-wall carbon nanotubes was used to mold single composite MNs, which were then attached to pre-patterned electrodes. Plasma etching and electropolymerization were performed to enhance the electrochemical activity, and Prussian blue and glucose oxidase were electrodeposited on the MNs for glucose detection. The MN electrodes showed good sensitivity and linearity, and the feasibility of glucose detection was demonstrated in an in vivo mouse study.

SENSORS AND ACTUATORS B-CHEMICAL (2024)