4.7 Article

Nitrogen content determines adventitious rooting in Euphorbia pulcherrima under adequate light independently of pre-rooting carbohydrate depletion of cuttings

期刊

SCIENTIA HORTICULTURAE
卷 121, 期 3, 页码 340-347

出版社

ELSEVIER
DOI: 10.1016/j.scienta.2009.02.012

关键词

Poinsettia; Adventitious root formation; Nitrogen; Light conditions; Storage; Sucrose

资金

  1. Federal Ministry for Consumer Protection, Food and Agriculture
  2. Ministry for Agriculture, Nature Conservation
  3. Environment of the Free State of Thuringia

向作者/读者索取更多资源

Root regeneration in shoot tip cuttings responds to graduated nitrogen (N) fertilization of stock plants. In pelargonium cuttings, reduced carbohydrate reserves caused by high N absorption by the donor plants and post-harvest storage of cuttings limit adventitious root formation, especially in low-light environments. In contrast, in chrysanthemum, similar carbohydrate reserves do not have this dominant effect on rooting capacity. The positive correlation between rooting capacity and internal N status is stable across a wide range of environments and is genotypically consistent for this species. However, the influence of N and carbohydrates on adventitious rooting of Euphorbia pulcherrima is unknown. We investigated the consequences of different N fertilization regimens applied to E. pulcherrima stock plants and cold and dark storage of the cuttings on N absorption, carbohydrate distribution, and rooting capacity of cuttings. Increasing time of stock plant cultivation with graduated N nutrition produced cuttings with N contents, ranging from 19 to 51 mg N g(-1) dry mass (DM). High N absorption resulted in low carbohydrate concentrations in cuttings, and subsequent storage decreased carbohydrate concentrations further, particularly in stems. Lower sucrose contents in leaves were correlated with reduced rooting of stored cuttings at a particular harvest date. However, despite the lower carbohydrate levels, root numbers and lengths correlated positively with internal N concentrations. These relationships remained stable in unstored and stored cuttings, even when overall rooting intensity was reduced under lower natural light during autumn. Multivariate regressions accounting for nitrogen content, sucrose content and daily light integral during rooting highlighted these relationships and explained up to 79% of rooting variances. We conclude N nutrition of stock plants and N absorption by cuttings are the dominant factors determining the rooting capacity of poinsettia when rooting occurs under sufficient light, as is commonly available during propagation. To maximize rooting capacity of poinsettia cuttings their nitrogen content should exceed a threshold of 40 mg N g(-1) DM. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据