4.5 Article

Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 83, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3703315

关键词

-

资金

  1. Sandia National Laboratory [611557]
  2. NLUF (DOE) [DE-NA0000877]
  3. FSC Rochester [415023-G]
  4. U.S. Department of Energy (U.S. DOE) [DE-FG03-03SF22691]
  5. Laboratory for Laser Energetics (LLE) [412160-001G]
  6. LLNL [B504974]
  7. GA under DOE [DE-AC52-06NA27279]

向作者/读者索取更多资源

The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and (DHe)-He-3 fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and (DHe)-He-3, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3703315]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Multidisciplinary Sciences

Burning plasma achieved in inertial fusion

A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L. Baker, D. T. Casey, T. Doppner, L. Divol, M. Hohenberger, S. Le Pape, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, J. Biener, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, D. S. Clark, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, C. Kong, J. M. Koning, J. J. Kroll, M. K. G. Kruse, B. Kustowski, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J. W. Morton, T. Murphy, K. Newman, J. -M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, C. R. Weber, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman

Summary: A burning-plasma state has been achieved in the laboratory using a laser facility to generate X-rays and compress and heat a fuel-containing capsule. Experiments show fusion self-heating exceeding the mechanical work input, and a subset of experiments appear to have crossed the static self-heating boundary, providing an opportunity to study α-particle-dominated plasmas and burning-plasma physics.

NATURE (2022)

Article Instruments & Instrumentation

High-yield magnetic recoil neutron spectrometer on the National Ignition Facility for operation up to 60 MJ

M. Gatu Johnson, T. M. Johnson, B. J. Lahmann, F. H. Seguin, B. Sperry, N. Bhandarkar, R. M. Bionta, E. Casco, D. T. Casey, A. J. Mackinnon, N. Masters, A. Moore, A. Nikroo, M. Hoppe, R. Mohammed, W. Sweet, C. Freeman, V. Picciotto, J. Roumell, J. A. Frenje

Summary: The recent progress in NIF has brought new requirements for diagnostic tools. This study aims to extend the operating range of the Magnetic Recoil neutron Spectrometer (MRS) to meet the demand for higher yields, and proposes a solution.

REVIEW OF SCIENTIFIC INSTRUMENTS (2022)

Article Instruments & Instrumentation

Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)

J. H. Kunimune, M. Gatu Johnson, A. S. Moore, C. A. Trosseille, T. M. Johnson, G. P. A. Berg, A. J. Mackinnon, J. D. Kilkenny, J. A. Frenje

Summary: The time-resolving magnetic recoil spectrometer (MRSt) is a diagnostic tool used to measure the time-resolved neutron spectrum in inertial confinement fusion implosions. It utilizes a foil and ion-optical system along with specific detectors to gradually implement and collect data, providing support for further research in the field.

REVIEW OF SCIENTIFIC INSTRUMENTS (2022)

Article Physics, Multidisciplinary

Evidence for suprathermal ion distribution in burning plasmas

E. P. Hartouni, A. S. Moore, A. J. Crilly, B. D. Appelbe, P. A. Amendt, K. L. Baker, D. T. Casey, D. S. Clark, T. Doppner, M. J. Eckart, J. E. Field, M. Gatu-Johnson, G. P. Grim, R. Hatarik, J. Jeet, S. M. Kerr, J. Kilkenny, A. L. Kritcher, K. D. Meaney, J. L. Milovich, D. H. Munro, R. C. Nora, A. E. Pak, J. E. Ralph, H. F. Robey, J. S. Ross, D. J. Schlossberg, S. M. Sepke, B. K. Spears, C. Young, A. B. Zylstra

Summary: Inertial confinement fusion experiments at the National Ignition Facility aim to achieve sustained thermonuclear burn for energy generation. This study investigates the departure from hydrodynamic behavior when fusion reactions become the primary source of plasma heating. The relationship between ion temperature and mean ion kinetic energy is analyzed using neutron spectrum moments.

NATURE PHYSICS (2023)

Article Physics, Multidisciplinary

Towards the first plasma-electron screening experiment

Daniel T. Casey, Chris R. Weber, Alex B. Zylstra, Charlie J. Cerjan, Ed Hartouni, Matthias Hohenberger, Laurent Divol, David S. Dearborn, Neel Kabadi, Brandon Lahmann, Maria Gatu Johnson, Johan A. Frenje

Summary: The enhancement of fusion reaction rates by electron screening is an important plasma-nuclear effect but has not been experimentally observed. Experiments using inertial confinement fusion (ICF) implosions may provide an opportunity to observe this effect. The experiments at the National Ignition Facility (NIF) have reached the relevant physical regime, but the expected impacts of plasma screening on nuclear reaction rates are currently too small and need to be increased. This work lays the foundation for future efforts to develop a platform capable of observing plasma electron screening.

FRONTIERS IN PHYSICS (2023)

Article Physics, Fluids & Plasmas

Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility

K. L. Baker, C. A. Thomas, O. L. Landen, S. Haan, J. D. Lindl, D. T. Casey, C. Young, R. Nora, O. A. Hurricane, D. A. Callahan, O. Jones, L. Berzak Hopkins, S. Khan, B. K. Spears, S. Le Pape, N. B. Meezan, D. D. Ho, T. Doppner, D. Hinkel, E. L. Dewald, R. Tommasini, M. Hohenberger, C. Weber, D. Clark, D. T. Woods, J. L. Milovich, D. Strozzi, A. Kritcher, H. F. Robey, J. S. Ross, V. A. Smalyuk, P. A. Amendt, B. Bachmann, L. R. Benedetti, R. Bionta, P. M. Celliers, D. Fittinghoff, C. Goyon, R. Hatarik, N. Izumi, M. Gatu Johnson, G. Kyrala, T. Ma, K. Meaney, M. Millot, S. R. Nagel, P. K. Patel, D. Turnbull, P. L. Volegov, C. Yeamans, C. Wilde

Summary: In indirect-drive implosions, increasing laser peak power and radiation drive temperature can improve the core hot spot energy, pressure, and neutron yield. This improvement has been quantified and explained by simple analytic scalings validated by 1D simulations. Extrapolating from existing data, it is possible to achieve a yield of 2-3x10^17 (0.5-0.7 MJ) using only 1.8 MJ of laser energy in a low gas-fill 5.4 mm diameter Hohlraum at the 500 TW National Ignition Facility peak power limit.

PHYSICS OF PLASMAS (2023)

Article Physics, Fluids & Plasmas

Measuring and simulating ice-ablator mix in inertial confinement fusion

B. Bachmann, S. A. MacLaren, L. Masse, S. Bhandarkar, T. Briggs, D. Casey, L. Divol, T. Doeppner, D. Fittinghoff, M. Freeman, S. Haan, G. N. Hall, B. Hammel, E. Hartouni, N. Izumi, V. Geppert-Kleinrath, S. Khan, B. Kozioziemski, C. Krauland, O. Landen, D. Mariscal, E. Marley, K. Meaney, G. Mellos, A. Moore, A. Pak, P. Patel, M. Ratledge, N. Rice, M. Rubery, J. Salmonson, J. Sater, D. Schlossberg, M. Schneider, V. A. Smalyuk, C. Trosseille, P. Volegov, C. Weber, G. J. Williams, A. Wray

Summary: Fuel-ablator mix has a significant impact on the performance of inertial confinement fusion experiments. Studying this mix through experiments and simulations can improve our understanding of these experiments and lead to higher yields and increased robustness.

PHYSICS OF PLASMAS (2023)

Article Instruments & Instrumentation

Determining spectral response of the National Ignition Facility particle time of flight diagnostic to x rays

B. Reichelt, N. Kabadi, J. Pearcy, M. Gatu Johnson, S. Dannhoff, B. Lahmann, J. Frenje, C. K. Li, G. Sutcliffe, J. Kunimune, R. Petrasso, H. Sio, A. Moore, E. Mariscal, E. Hartouni

Summary: This paper develops a process to determine the x-ray sensitivity of PTOF detectors and relates it to the intrinsic properties of the detector. It is demonstrated that the diamond sample has significant non-homogeneity and the charge collection can be described by a linear model ax + b, where a = 0.63 +/- 0.16 V-1 mm(-1) and b = 0.00 +/- 0.04 V-1. The electron to hole mobility ratio is confirmed to be 1.5 +/- 1.0 and the effective bandgap is 1.8 eV, leading to an increased sensitivity.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Review Instruments & Instrumentation

Charged particle diagnostics for inertial confinement fusion and high-energy-density physics experiments

M. Gatu Johnson

Summary: MeV-range ions generated in ICF and high-energy-density physics experiments carry important information, such as fusion reaction yield, implosion areal density, electron temperature, and electric and magnetic fields. This paper reviews the principles of obtaining this information from data and describes the charged particle diagnostic suite available at major US ICF facilities. It discusses time-integrating instruments, time-resolving detectors, and charged-particle radiography setups for measuring ion emission and probing plasma experiments.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Physics, Fluids & Plasmas

Measuring stopping power in warm dense matter plasmas at OMEGA

B. Lahmann, A. M. Saunders, T. Doppner, J. A. Frenje, S. H. Glenzer, M. Gatu-Johnson, G. Sutcliffe, A. B. Zylstra, R. D. Petrasso

Summary: A platform has been developed to measure accurately the stopping power of high-energy protons in warm dense matter (WDM) plasmas using x-ray Thomson scattering. In this study, stopping power measurements were successfully conducted in both WDM beryllium and boron plasmas. An increase in stopping power was observed in the boron experiments compared to their cold target counterparts, which agreed well with models accounting for the partial ionization of the plasma.

PLASMA PHYSICS AND CONTROLLED FUSION (2023)

Correction Multidisciplinary Sciences

Rayleigh-Taylor instabilities in high-energy density settings on the National Ignition Facility (vol 116, pg 18233, 2018)

Bruce A. Remington, Park Hye-Sook, Daniel T. Casey, Robert M. Cavallo, Daniel S. Clark, Daniel H. Kalantar, Carolyn C. Kuranz, Aaron R. Miles, Sabrina R. Nagel, Kumar S. Raman, Christopher E. Wehrenberg, Vladimir A. Smalyuk

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2023)

暂无数据