4.8 Article

Operation of the voltage sensor of a human voltage- and Ca2+-activated K+ channel

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0911959107

关键词

BK; cooperativity; fluorometry; Slo1; MaxiK

资金

  1. National Institutes of Health/National Institute of General Medical Sciences [R01GM082289]
  2. Laubisch Foundation
  3. American Heart Association Postdoctoral Fellowship (Western States Affiliate)

向作者/读者索取更多资源

Voltage sensor domains (VSDs) are structurally and functionally conserved protein modules that consist of four transmembrane segments (S1-S4) and confer voltage sensitivity to many ion channels. Depolarization is sensed by VSD-charged residues residing in the membrane field, inducing VSD activation that facilitates channel gating. S4 is typically thought to be the principal functional component of the VSD because it carries, inmost channels, a large portion of the VSD gating charge. The VSDs of large-conductance, voltage- and Ca2+-activated K+ channels are peculiar in that more gating charge is carried by transmembrane segments other than S4. Considering its decentralized distribution of voltage- sensing residues, we probed the BKCa VSD for evidence of cooperativity between charge-carrying segments S2 and S4. We achieved this by optically tracking their activation by using voltage clamp fluorometry, in channels with intact voltage sensors and charge-neutralized mutants. The results from these experiments indicate that S2 and S4 possess distinct voltage dependence, but functionally interact, such that the effective valence of one segment is affected by charge neutralization in the other. Statistical-mechanical modeling of the experimental findings using allosteric interactions demonstrates two mechanisms (mechanical coupling and dynamic focusing of the membrane electric field) that are compatible with the observed cross-segment effects of charge neutralization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据