4.7 Article

1-MCP partially alleviates dehydration-induced abscission in cut leaves of the fern Nephrolepis cordifolia

期刊

POSTHARVEST BIOLOGY AND TECHNOLOGY
卷 59, 期 3, 页码 253-257

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.postharvbio.2010.10.001

关键词

Ethylene production; Vase life; Water stress; Weight loss

资金

  1. Thailand Research Fund (TRF)
  2. Commission on Higher Education (CHE)
  3. Ministry of Education
  4. Kasetsart University Research and Development Institute (KURDI)
  5. Postharvest Technology Innovation Center (PHTIC), Thailand

向作者/读者索取更多资源

Fern leaves, also called fronds, are often used in bouquets. Leaves of the sword fern (Nephrolepis cordifolia) consist of a central vascular tissue, with numerous leaflets (pinnae) at each side. Leaves that have been cut and immediately placed in water show abscission of the pinnae, starting from about day 4 of vase life, with 50% pinnae abscission on day 13. The onset of pinnae abscission was hastened by a period of dehydration (3, 6,9 or 12 h at 25 degrees C). The time to 50% pinnae abscission was between 7.0 and 4.7 days after 3 h and 12 h of dehydration, respectively. Dehydration treatments might induce air emboli in the xylem, but in these experiments did not inhibit water uptake. Dehydration did increase the rate of ethylene production of the cut leaves throughout vase life. A 3 h treatment with 1-MCP at concentrations of 200 or 300 nL L-1 prior to the period of dehydration reduced the rate of ethylene production and reduced the rate of abscission. 1-MCP treatments were also effective if given after the period of dehydration. The data show that pinnae abscission limits the vase life of cut leaves of the sword fern, and that a short period of water stress drastically increases the rate of abscission. The increase in pinnae abscission was correlated with an increase in ethylene production. As 1-MCP alleviated the effect of dehydration on pinnae abscission, the dehydration effect involved ethylene perception. The data suggest that a small water stress induced an autocatalytic rise in ethylene production which was the direct cause of the increase in pinnae abscission. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据