4.6 Article

Stabilization of an ambient-pressure collapsed tetragonal phase in CaFe2As2 and tuning of the orthorhombic-antiferromagnetic transition temperature by over 70 K via control of nanoscale precipitates

期刊

PHYSICAL REVIEW B
卷 83, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.144517

关键词

-

资金

  1. US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering
  2. US Department of Energy by Iowa State University [DE-AC02-07CH11358]
  3. Natural Sciences and Engineering Research Council of Canada
  4. Fonds Quebecois de la Recherche sur la Nature et les Technologies

向作者/读者索取更多资源

We have found a remarkably large response of the transition temperature of CaFe2As2 single crystals grown from excess FeAs to annealing and quenching temperature. Whereas crystals that are annealed at 400 degrees C exhibit a first-order phase transition from a high-temperature tetragonal to a low-temperature orthorhombic and antiferromagnetic state near 170 K, crystals that have been quenched from 960 degrees C exhibit a transition from a high-temperature tetragonal phase to a low-temperature, nonmagnetic, collapsed tetragonal phase below 100 K. By use of temperature-dependent electrical resistivity, magnetic susceptibility, x-ray diffraction, Mossbauer spectroscopy, and nuclear magnetic resonance measurements we have been able to demonstrate that the transition temperature can be reduced in a monotonic fashion by varying the annealing or quenching temperature from 400 degrees to 850 degrees C with the low-temperature state remaining antiferromagnetic for transition temperatures larger than 100 K and becoming collapsed tetragonal, nonmagnetic for transition temperatures below 90 K. This suppression of the orthorhombic-antiferromagnetic phase transition and its ultimate replacement with the collapsed tetragonal, nonmagnetic phase is similar to what has been observed for CaFe2As2 under hydrostatic pressure. Transmission electron microscopy studies indicate that there is a temperature-dependent width of formation of CaFe2As2 with a decreasing amount of excess Fe and As being soluble in the single crystal at lower annealing temperatures. For samples quenched from 960 degrees C there is a fine (of order 10 nm) semiuniform distribution of precipitate that can be associated with an average strain field, whereas for samples annealed at 400 degrees C the excess Fe and As form mesoscopic grains that induce little strain throughout the CaFe2As2 lattice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Uniaxial compression of [001]-oriented CaFe2As2 single crystals:the effects of microstructure and temperature on superelasticity Part I: Experimental observations

John T. Sypek, Sriram Vijayan, Ian Bakst, Shuyang Xiao, Matthew J. Kramer, Paul C. Canfield, Mark Aindow, Christopher R. Weinberger, Seok-Woo Lee

Summary: The micropillar compression experiments on [001]-oriented CaFe2As2 single crystals have shown the existence of superelasticity with a high elastic limit. The collapsed tetragonal phase transition, influenced by microstructure and temperature, is the main mechanism of superelasticity. Factors like vacancies and nanoprecipitates affect the mechanical behavior significantly, and the onset stress for the phase transition decreases with decreasing temperature.

ACTA MATERIALIA (2021)

Article Materials Science, Multidisciplinary

Effects of Solidification Cooling Rates on Microstructures and Physical Properties of Fe-6.5%Si Alloys

Gaoyuan Ouyang, Chad R. Macziewski, Brandt Jensen, Tao Ma, Renu Choudhary, Kevin Dennis, Lin Zhou, Durga Paudyal, Iver Anderson, Matthew J. Kramer, Jun Cui

Summary: This study systematically investigates the effect of cooling rate on physical properties of Fe-6.5wt%Si alloy by changing melt-spin wheel speeds, which significantly affect the solidification temperature profile, ordering, microstructures, textures, hardness, and magnetic properties. The research shows a critical cooling rate at around 1.7 x 10(5) K/s, below which the material embrittlement occurs due to the increase of ordered phases.

ACTA MATERIALIA (2021)

Article Physics, Nuclear

Search for electron-antineutrinos associated with gravitational-wave events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay *

F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, G. F. Cao, J. Cao, J. F. Chang, Y. Chang, H. S. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, O. Dalager, F. S. Deng, Y. Y. Ding, M. Diwan, T. Dohnal, J. Dove, D. A. Dwyer, J. P. Gallo, M. Gonchar, G. H. Gong, H. Gong, W. Q. Gu, J. Y. Guo, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, J. R. Hu, T. Hu, Z. J. Hu, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, D. E. Jaffe, K. L. Jen, X. L. Ji, X. P. Ji, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, T. J. Langford, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, F. Li, J. J. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. C. Liu, J. L. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. B. Ma, X. Y. Ma, Y. Q. Ma, C. Marshall, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, Y. Meng, J. Napolitano, D. Naumov, E. Naumova, J. P. Ochoa-Ricoux, A. Olshevskiy, H-R Pan, J. Park, S. Patton, J. C. Peng, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, C. Morales Reveco, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, J. L. Sun, T. Tmej, K. Treskov, W-H Tse, C. E. Tull, B. Viren, V. Vorobel, C. H. Wang, J. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. H. Wei, L. J. Wen, K. Whisnant, C. G. White, H. L. H. Wong, E. Worcester, D. R. Wu, F. L. Wu, Q. Wu, W. J. Wu, D. M. Xia, Z. Q. Xie, Z. Z. Xing, J. L. Xu, T. Xu, T. Xue, C. G. Yang, L. Yang, Y. Z. Yang, H. F. Yao, M. Ye, M. Yeh, B. L. Young, H. Z. Yu, Z. Y. Yu, B. B. Yue, S. Zeng, Y. Zeng, L. Zhan, C. Zhang, F. Y. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. Y. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

Summary: In the Daya Bay experiment, a search was conducted for electron-antineutrino signals that coincided with detected GW events from December 2011 to August 2017. Upper limits of the electron-antineutrino fluence were found for different time windows based on the assumption of monochromatic or Fermi-Dirac spectra.

CHINESE PHYSICS C (2021)

Article Materials Science, Multidisciplinary

Magnetic and mechanical properties of grain-refined Dy-free Nd-Fe-B sintered magnets

Wei Tang, Gaoyuan Ouyang, Baozhi Cui, Jing Wang, Kevin W. Dennis, Matthew J. Kramer, Iver E. Anderson, Jun Cui

Summary: The study explores the impact of grain size on magnetic and mechanical properties of Dy-free Nd-Fe-B sintered magnets, revealing that reducing grain size can enhance magnetic properties and thermal stability. However, controlling Oxygen content is crucial in balancing magnetic and mechanical properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2021)

Article Instruments & Instrumentation

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

A. Abusleme, T. Adam, S. Ahmad, S. Aiello, M. Akram, N. Ali, F. P. An, G. P. An, Q. An, G. Andronico, N. Anfimov, V Antonelli, T. Antoshkina, B. Asavapibhop, J. P. A. M. de Andre, A. Babic, A. B. Balantekin, W. Baldini, M. Baldoncini, H. R. Band, A. Barresi, E. Baussan, M. Bellato, E. Bernieri, D. Biare, T. Birkenfeld, M. Bishai, S. Blin, D. Blum, S. Blyth, C. Bordereau, A. Brigatti, R. Brugnera, A. Budano, P. Burgbacher, M. Buscemi, S. Bussino, J. Busto, I Butorov, A. Cabrera, H. Cai, X. Cai, Y. K. Cai, Z. Y. Cai, A. Cammi, A. Campeny, C. Y. Cao, G. F. Cao, J. Cao, R. Caruso, C. Cerna, I Chakaberia, J. F. Chang, Y. Chang, H. S. Chen, P. A. Chen, P. P. Chen, S. M. Chen, S. J. Chen, X. R. Chen, Y. W. Chen, Y. X. Chen, Y. Chen, Z. Chen, J. Cheng, Y. P. Cheng, Z. K. Cheng, A. Chepurnov, J. J. Cherwinka, F. Chiarello, D. Chiesa, P. Chimenti, M. C. Chu, A. Chukanov, B. Clerbaux, S. Conforti Di Lorenzo, D. Corti, S. Costa, F. D. Corso, J. P. Cummings, O. Dalager, C. De La Taille, F. S. Deng, J. W. Deng, Z. Deng, Z. Y. Deng, W. Depnering, M. Diaz, X. F. Ding, Y. Y. Ding, B. Dirgantara, S. Dmitrievsky, M. Diwan, T. Dohnal, G. Donchenko, J. M. Dong, D. Dornic, E. Doroshkevich, J. Dove, M. Dracos, F. Druillole, S. X. Du, S. Dusini, M. Dvorak, D. A. Dwyer, T. Enqvist, H. Enzmann, A. Fabbri, L. Fajt, D. H. Fan, L. Fan, C. Fang, J. Fang, A. Fatkina, D. Fedoseev, V Fekete, L. C. Feng, Q. C. Feng, G. Fiorentini, R. Ford, A. Formozov, A. Fournier, S. Franke, J. P. Gallo, H. N. Gan, F. Gao, A. Garfagnini, C. Genster, M. Giammarchi, A. Giaz, N. Giudice, F. Giuliani, M. Gonchar, G. H. Gong, H. Gong, O. Gorchakov, Y. Gornushkin, M. Grassi, C. Grewing, M. Gromov, V Gromov, M. H. Gu, W. Q. Gu, X. F. Gu, Y. Gu, M. Y. Guan, N. Guardone, M. Gul, C. Guo, J. Y. Guo, L. Guo, W. L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, M. Haacke, R. W. Hackenburg, P. Hackspacher, C. Hagner, R. Han, Y. Han, S. Hans, M. He, W. He, K. M. Heeger, T. Heinz, Y. K. Heng, R. Herrera, A. Higuera, D. J. Hong, Y. K. Hor, S. J. Hou, Y. B. Hsiung, B. Z. Hu, H. Hu, R. Hu, J. Hu, S. Y. Hu, T. Hu, Z. J. Hu, C. H. Huang, G. H. Huang, H. X. Huang, Q. H. Huang, W. H. Huang, X. T. Huang, Y. B. Huang, P. Huber, J. Q. Hui, L. Huo, W. J. Huo, C. Huss, S. Hussain, A. Insolia, A. Ioannisian, D. Ioannisyan, R. Isocrate, D. E. Jaffe, K. L. Jen, X. L. Ji, X. P. Ji, X. Z. Ji, H. H. Jia, J. J. Jia, S. Y. Jian, D. Jiang, X. S. Jiang, R. Y. Jin, X. P. Jing, R. A. Johnson, C. Jollet, D. Jones, J. Joutsenvaara, S. Jungthawan, L. Kalousis, P. Kampmann, L. Kang, M. Karagounis, N. Kazarian, S. H. Kettell, A. Khan, W. Khan, K. Khosonthongkee, P. Kinz, S. Kohn, D. Korablev, K. Kouzakov, M. Kramer, A. Krasnoperov, S. Krokhaleva, Z. Krumshteyn, A. Kruth, N. Kutovskiy, P. Kuusiniemi, B. Lachacinski, T. Lachenmaier, T. J. Langford, J. Lee, J. H. C. Lee, F. Lefevre, L. Lei, R. Lei, R. Leitner, J. Leung, D. M. Li, F. Li, F. Li, H. T. Li, H. L. Li, J. Li, J. J. Li, J. Q. Li, K. J. Li, M. Z. Li, N. Li, N. Li, Q. J. Li, Q. J. Li, R. H. Li, S. C. Li, S. F. Li, S. J. Li, T. Li, W. D. Li, W. G. Li, X. M. Li, X. N. Li, X. L. Li, X. Q. Li, Y. Li, Y. F. Li, Z. B. Li, Z. Y. Li, H. Liang, H. Liang, J. J. Liang, D. Liebau, A. Limphirat, S. Limpijumnong, C. J. Lin, G. L. Lin, S. X. Lin, T. Lin, Y. H. Lin, J. J. Ling, J. M. Link, I Lippi, L. Littenberg, B. R. Littlejohn, F. Liu, H. Liu, H. Liu, H. B. Liu, H. D. Liu, H. J. Liu, H. T. Liu, J. C. Liu, J. L. Liu, M. Liu, Q. Liu, Q. Liu, R. X. Liu, S. Y. Liu, S. B. Liu, S. L. Liu, X. W. Liu, Y. Liu, A. Lokhov, P. Lombardi, K. Loo, S. Lorenz, C. Lu, C. Lu, H. Q. Lu, J. B. Lu, J. G. Lu, S. X. Lu, X. X. Lu, B. Lubsandorzhiev, S. Lubsandorzhiev, L. Ludhova, K. B. Luk, F. J. Luo, G. Luo, P. W. Luo, S. Luo, W. M. Luo, V Lyashuk, Q. M. Ma, Y. Malyshkin, F. Mantovani, S. M. Mari, F. Marini, S. Marium, C. Marshall, C. Martellini, G. Martin-Chassard, D. A. Martinez Caicedo, A. Martini, J. Martino, D. Mayilyan, K. T. McDonald, R. D. McKeown, A. Mueller, G. Meng, I Mednieks, Y. Meng, A. Meregaglia, E. Meroni, M. Mezzetto, J. Miller, L. Miramonti, S. Monforte, A. Chuvashova, C. Clementi, A. Gottel, C. Landini, S. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, Y. J. Mao, D. Meyhofer, P. Montini, M. Montuschi, N. Morozov, P. Muralidharan, J. Napolitano, M. Nastasi, D. Naumov, E. Naumova, I Nemchenok, A. Nikolaev, F. P. Ning, Z. Ning, H. Nunokawa, L. Oberauer, J. P. Ochoa-Ricoux, A. Olshevskiy, F. Ortica, H. R. Pan, A. Paoloni, J. Park, N. Parkalian, S. Parmeggiano, S. Patton, T. Payupol, V Pec, D. Pedretti, Y. T. Pei, N. Pelliccia, A. G. Peng, H. P. Peng, J. C. Peng, F. Perrot, P. A. Petitjean, L. F. Pineres Rico, A. Popov, P. Poussot, W. Pratumwan, E. Previtali, C. S. J. Pun, F. Z. Qi, M. Qi, S. Qian, X. Qian, X. H. Qian, H. Qiao, Z. H. Qin, S. K. Qiu, M. Rajput, G. Ranucci, N. Raper, A. Re, H. Rebber, A. Rebii, B. Ren, J. Ren, C. M. Reveco, T. Rezinko, B. Ricci, M. Robens, M. Roche, N. Rodphai, L. Rohwer, A. Romani, R. Rosero, B. Roskovec, C. Roth, X. C. Ruan, X. D. Ruan, S. Rujirawat, A. Rybnikov, A. Sadovsky, P. Saggese, G. Salamanna, A. Sangka, N. Sanguansak, U. Sawangwit, J. Sawatzki, F. Sawy, M. Schever, J. Schuler, C. Schwab, K. Schweizer, D. Selivanov, A. Selyunin, A. Serafini, G. Settanta, M. Settimo, M. Shahzad, G. Shi, J. Y. Shi, Y. J. Shi, V Shutov, A. Sidorenkov, F. Simkovic, C. Sirignano, J. Siripak, M. Sisti, M. Slupecki, M. Smirnov, O. Smirnov, T. Sogo-Bezerra, J. Songwadhana, B. Soonthornthum, A. Sotnikov, O. Sramek, W. Sreethawong, A. Stahl, L. Stanco, K. Stankevich, D. Stefanik, H. Steiger, H. Steiner, J. Steinmann, M. Stender, V Strati, A. Studenikin, G. X. Sun, L. T. Sun, J. L. Sun, S. F. Sun, X. L. Sun, Y. J. Sun, Y. Z. Sun, N. Suwonjandee, M. Szelezniak, J. Tang, Q. Tang, Q. Tang, X. Tang, A. Tietzsch, I Tkachev, T. Tmej, K. Treskov, G. Troni, W. Trzaska, W-H Tse, C. E. Tull, C. Tuve, S. van Waasen, J. Vanden Boom, N. Vassilopoulos, V. Vedin, G. Verde, M. Vialkov, B. Viaud, B. Viren, C. Volpe, V. Vorobel, L. Votano, P. Walker, C. Wang, C. H. Wang, E. Wang, G. L. Wang, J. Wang, J. Wang, K. Y. Wang, L. Wang, M. F. Wang, M. Wang, M. Wang, N. Y. Wang, R. G. Wang, S. G. Wang, W. Wang, W. Wang, W. S. Wang, X. Wang, X. Y. Wang, Y. Wang, Y. Wang, Y. Wang, Y. F. Wang, Y. G. Wang, Y. M. Wang, Y. Q. Wang, Z. Wang, Z. Wang, Z. M. Wang, Z. Y. Wang, A. Watcharangkool, H. Y. Wei, L. H. Wei, W. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, C. Wiebusch, S. C. F. Wong, H. L. H. Wong, B. Wonsak, E. Worcester, C. H. Wu, D. R. Wu, F. L. Wu, Q. Wu, W. J. Wu, Z. Wu, M. Wurm, J. Wurtz, C. Wysotzki, Y. F. Xi, D. M. Xia, Y. G. Xie, Z. Q. Xie, Z. Z. Xing, D. L. Xu, F. R. Xu, H. K. Xu, J. L. Xu, J. Xu, M. H. Xu, T. Xu, Y. Xu, Y. Xu, T. Xue, B. J. Yan, X. B. Yan, Y. P. Yan, A. B. Yang, C. G. Yang, H. Yang, J. Yang, L. Yang, X. Y. Yang, Y. F. Yang, Y. Z. Yang, H. F. Yao, Z. Yasin, J. X. Ye, M. Ye, U. Yegin, M. Yeh, F. Yermia, P. H. Yi, Z. Y. You, B. L. Young, B. X. Yu, C. X. Yu, C. Y. Yu, H. Z. Yu, M. Yu, X. H. Yu, Z. Y. Yu, C. Z. Yuan, Y. Yuan, Z. X. Yuan, Z. Y. Yuan, B. B. Yue, N. Zafar, A. Zambanini, P. Zeng, S. Zeng, T. X. Zeng, Y. D. Zeng, L. Zhan, C. Zhang, F. Y. Zhang, G. Q. Zhang, H. H. Zhang, H. Q. Zhang, J. Zhang, J. B. Zhang, J. W. Zhang, P. Zhang, Q. M. Zhang, T. Zhang, X. M. Zhang, X. T. Zhang, Y. Zhang, Y. H. Zhang, Y. M. Zhang, Y. P. Zhang, Y. X. Zhang, Y. Y. Zhang, Y. Y. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, Z. Y. Zhang, F. Y. Zhao, J. Zhao, R. Zhao, S. J. Zhao, T. C. Zhao, D. Q. Zheng, H. Zheng, M. S. Zheng, Y. H. Zheng, W. R. Zhong, J. Zhou, L. Zhou, N. Zhou, S. Zhou, X. Zhou, J. Zhu, K. J. Zhu, H. L. Zhuang, L. Zong, J. H. Zou

Summary: A 20 ton LS sample was produced in a pilot plant to study the optical properties of LS in different compositions for JUNO. The concentrations of PPO and bis-MSB were increased in steps to determine the optimal composition. Daya Bay data were used to tune an optical model for the JUNO simulation, resulting in the recommendation of purified LAB with 2.5 g/L PPO and 1 to 4 mg/L bis-MSB for JUNO LS.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT (2021)

Article Physics, Nuclear

Antineutrino energy spectrum unfolding based on the Daya Bay measurement and its applications

F. P. An, A. B. Balantekin, M. Bishai, S. Blyth, G. F. Cao, J. Cao, J. F. Chang, Y. Chang, H. S. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, O. Dalager, F. S. Deng, Y. Y. Ding, M. Diwan, T. Dohnal, D. Dolzhikov, J. Dove, M. Dvorak, D. A. Dwyer, J. P. Gallo, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, J. Y. Guo, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, J. R. Hu, T. Hu, Z. J. Hu, H. X. Huang, J. H. Huang, X. T. Huang, Y. B. Huang, P. Huber, D. E. Jaffe, K. L. Jen, X. L. Ji, X. P. Ji, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, T. J. Langford, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, F. Li, H. L. Li, J. J. Li, Q. J. Li, R. H. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. C. Liu, J. L. Liu, J. X. Liu, C. Lu, H. Q. Lu, K. B. Luk, B. Z. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, R. C. Mandujano, C. Marshall, K. T. McDonald, R. D. McKeown, Y. Meng, J. Napolitano, D. Naumov, E. Naumova, T. M. T. Nguyen, J. P. Ochoa-Ricoux, A. Olshevskiy, H-R Pan, J. Park, S. Patton, J. C. Peng, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, C. Morales Reveco, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, J. L. Sun, T. Tmej, K. Treskov, W-H Tse, C. E. Tull, B. Viren, V. Vorobel, C. H. Wang, J. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. Wang, X. Wang, Y. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. H. Wei, L. J. Wen, K. Whisnant, C. G. White, H. L. H. Wong, E. Worcester, D. R. Wu, F. L. Wu, Q. Wu, W. J. Wu, D. M. Xia, Z. Q. Xie, Z. Z. Xing, H. K. Xu, J. L. Xu, T. Xu, T. Xue, C. G. Yang, L. Yang, Y. Z. Yang, H. F. Yao, M. Ye, M. Yeh, B. L. Young, H. Z. Yu, Z. Y. Yu, B. B. Yue, V Zavadskyi, S. Zeng, Y. Zeng, L. Zhan, C. Zhang, F. Y. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, S. Q. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. Y. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, R. Z. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

Summary: The prediction of reactor antineutrino energy spectra is crucial for future precision experiments, with techniques like using observed positron energy spectra from Daya Bay experiment and fission rates of fissile isotopes. Various methods, including Wiener-SVD unfolding, can be used to accurately extract the antineutrino energy spectra. Additionally, a technique for predicting antineutrino spectra based on reactor fission fractions with a 2% precision has been proposed.

CHINESE PHYSICS C (2021)

Article Materials Science, Multidisciplinary

Unveiling the mechanism of phase and morphology selections during the devitrification of Al-Sm amorphous ribbon

Fanqiang Meng, Yang Sun, Feng Zhang, Bo Da, Cai-Zhuang Wang, Matthew J. Kramer, Kai-Ming Ho, Dongbai Sun

Summary: This study observed the experimental phenomena of phase selection and grain size evolution during the devitrification of a homogeneous melt-spun glassy ribbon, finding different crystalline phases and grain size distributions. The research revealed that different types and populations of atomic clusters can influence the nucleation of different crystalline phases, and that uneven cooling rates lead to different structural orderings within the glass sample.

PHYSICAL REVIEW MATERIALS (2021)

Article Physics, Multidisciplinary

Joint Determination of Reactor Antineutrino Spectra from 235U and 239Pu Fission by Daya Bay and PROSPECT

F. P. An, M. Andriamirado, A. B. Balantekin, H. R. Band, C. D. Bass, D. E. Bergeron, D. Berish, M. Bishai, S. Blyth, N. S. Bowden, C. D. Bryan, G. F. Cao, J. Cao, J. F. Chang, Y. Chang, H. S. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, T. Classen, A. J. Conant, J. P. Cummings, O. Dalager, G. Deichert, A. Delgado, F. S. Deng, Y. Y. Ding, M. Diwan, T. Dohnal, M. J. Dolinski, D. Dolzhikov, J. Dove, D. A. Dwyer, A. Erickson, B. T. Foust, J. K. Gaison, A. Galindo-Uribarri, J. P. Gallo, C. E. Gilbert, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, J. Y. Guo, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, A. B. Hansell, M. He, K. M. Heeger, B. Heffron, Y. K. Heng, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, J. R. Hu, T. Hu, Z. J. Hu, H. X. Huang, J. H. Huang, X. T. Huang, Y. B. Huang, P. Huber, J. Koblanski, D. E. Jaffe, S. Jayakumar, K. L. Jen, X. L. Ji, X. P. Ji, R. A. Johnson, D. C. Jones, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, O. Kyzylova, C. E. Lane, T. J. Langford, J. LaRosa, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, F. Li, H. L. Li, J. J. Li, Q. J. Li, R. H. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. C. Liu, J. L. Liu, J. X. Liu, C. Lu, H. Q. Lu, X. Lu, K. B. Luk, B. Z. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, R. C. Mandujano, J. Maricic, C. Marshall, K. T. McDonald, R. D. McKeown, M. P. Mendenhall, Y. Meng, A. M. Meyer, R. Milincic, P. E. Mueller, H. P. Mumm, J. Napolitano, D. Naumov, E. Naumova, R. Neilson, T. M. T. Nguyen, J. A. Nikkel, S. Nour, J. P. Ochoa-Ricoux, A. Olshevskiy, J. L. Palomino, H-R Pan, J. Park, S. Patton, J. C. Peng, C. S. J. Pun, D. A. Pushin, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, C. Morales Reveco, R. Rosero, B. Roskovec, X. C. Ruan, M. Searles, H. Steiner, J. L. Sun, P. T. Surukuchi, T. Tmej, K. Treskov, W-H Tse, C. E. Tull, M. A. Tyra, R. L. Varner, D. Venegas-Vargas, B. Viren, V. Vorobel, C. H. Wang, J. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. Wang, X. Wang, Y. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, P. B. Weatherly, H. Y. Wei, L. H. Wei, L. J. Wen, K. Whisnant, C. White, J. Wilhelmi, H. L. H. Wong, A. Woolverton, E. Worcester, D. R. Wu, F. L. Wu, Q. Wu, W. J. Wu, D. M. Xia, Z. Q. Xie, Z. Z. Xing, H. K. Xu, J. L. Xu, T. Xu, T. Xue, C. G. Yang, L. Yang, Y. Z. Yang, H. F. Yao, M. Ye, M. Yeh, B. L. Young, H. Z. Yu, Z. Y. Yu, B. B. Yue, V Zavadskyi, S. Zeng, Y. Zeng, L. Zhan, C. Zhang, F. Y. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, S. Q. Zhang, X. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. Y. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, R. Z. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

Summary: The reactor antineutrino spectra resulting from the fission of U-235 and Pu-239 were jointly analyzed by the Daya Bay and PROSPECT Collaborations. The analysis showed consistency between the U-235 spectrum measurements from the two experiments and improved the uncertainty of the U-235 spectral shape. The unfolded U-235 and Pu-239 antineutrino energy spectra can serve as a reference for other reactor antineutrino experiments.

PHYSICAL REVIEW LETTERS (2022)

Article Nanoscience & Nanotechnology

Effects of tensile loading during annealing of alnico melt spun ribbons

E. A. Rinko, X. Zhang, W. Tang, L. H. Lewis, M. J. Kramer, I. E. Anderson

Summary: Conventional magnetic annealing of alnico limits its coercivity due to the biasing effect of a magnetic field. This study explores tensile-loading as a new biasing mechanism to optimize the final nanostructure of alnico.

AIP ADVANCES (2022)

Article Multidisciplinary Sciences

Real-space observation of fluctuating antiferromagnetic domains

Min Gyu Kim, Andi Barbour, Wen Hu, Stuart B. Wilkins, Ian K. Robinson, Mark P. M. Dean, Junjie Yang, Choongjae Won, Sang-Wook Cheong, Claudio Mazzoli, Valery Kiryukhin

Summary: Magnetic domains in antiferromagnetic materials are crucial for understanding magnetism and its applications. In this study, videos of fluctuating antiferromagnetic domains in Ni2MnTeO6 were obtained using coherent x-ray diffraction. The findings highlight the potential significance of dynamic domain imaging in phase transition studies and magnetic device research.

SCIENCE ADVANCES (2022)

Article Materials Science, Multidisciplinary

Microstructural evolutions, phase transformations and hard magnetic properties in polycrystalline Ce-Co-Fe-Cu alloys

Kinjal Gandha, Rakesh P. Chaudhary, Matthew J. Kramer, Ryan T. Ott, Durga Paudyal, I. C. Nlebedim

Summary: This work systematically studies the Ce-Co based 1:5 permanent magnet alloys and investigates the impact of Co:Fe ratio on the hard-magnetic properties. The addition of Cu is found to improve the mutual solubility of Fe in the 1:5 phase. The research reveals that lower Fe content leads to a homogeneous microstructure and good magnetic properties, while a certain range of Fe content may result in the evolution of other phases. Furthermore, adding Fe enhances magnetization and Curie temperature, while increasing Cu content enhances coercivity.

MATERIALS CHEMISTRY AND PHYSICS (2022)

Article Chemistry, Physical

Distilling physical origins of hardness in multi-principal element alloys directly from ensemble neural network models

D. Beniwal, P. Singh, S. Gupta, M. J. Kramer, D. D. Johnson, P. K. Ray

Summary: This paper presents a machine-learning framework that predicts the hardness of multi-principal element alloys. By testing on different datasets and validating through experiments, it successfully predicts the hardness of various alloy systems and provides detailed model analysis for material-specific insights.

NPJ COMPUTATIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Developing a Chemical and Structural Understanding of the Surface Oxide in a Niobium Superconducting Qubit

Akshay A. Murthy, Paul Masih Das, Stephanie M. Ribet, Cameron Kopas, Jaeyel Lee, Matthew J. Reagor, Lin Zhou, Matthew J. Kramer, Mark C. Hersam, Mattia Checchin, Anna Grassellino, Roberto dos Reis, Vinayak P. Dravid, Alexander Romanenko

Summary: This study provides a detailed assessment of the surface oxide formed in ambient conditions for transmon test qubit devices patterned from a niobium film. The oxide exhibits varying stoichiometry and the Nb2O5 region is found to be semicrystalline with oxygen vacancies and weaker bonds between niobium and oxygen atoms.

ACS NANO (2022)

Article Chemistry, Physical

Design of refractory multi-principal-element alloys for high-temperature applications

Gaoyuan Ouyang, Prashant Singh, Ranran Su, Duane D. Johnson, Matthew J. Kramer, John H. Perepezko, Oleg N. Senkov, Daniel Miracle, Jun Cui

Summary: By using density-functional theory methods and rapid bulk alloy synthesis and characterization, the researchers discovered Mo72.3W12.8Ta10.0Ti2.5Zr2.5 alloy, which has a well-balanced combination of room-temperature and high-temperature mechanical properties. This alloy exhibits comparable high-temperature compressive strength to MoNbTaW but with improved ductility and creep resistance. It also outperforms a commercial Mo-based refractory alloy and a nickel-based superalloy (Haynes-282) in terms of high-temperature tensile strength and creep resistance.

NPJ COMPUTATIONAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Magnetic ordering and structural distortion in a PrFeAsO single crystal studied by neutron and x-ray scattering

M. G. Kim, W. Ratcliff, D. M. Pajerowski, J-W Kim, J-Q Yan, J. W. Lynn, A. Goldman, A. Kreyssig

Summary: The magnetic ordering and structural distortion in PrFeAsO crystals, the basis compound for oxypnictide superconductors, were studied using high-resolution x-ray diffraction, neutron diffraction, and x-ray resonant magnetic scattering. The results revealed the tetragonal-to-orthorhombic phase transition, antiferromagnetic phase transitions of Fe and Pr moments at specific temperatures. The magnetic moments of Pr were found to align along the longer orthorhombic axis and order antiferromagnetically along the a axis, while showing ferromagnetic ordering along the b and c directions, indicating no reorientation of moments.

PHYSICAL REVIEW B (2021)

暂无数据