4.7 Article

Adaptive fuzzy backstepping controller design for uncertain underactuated robotic systems

期刊

NONLINEAR DYNAMICS
卷 79, 期 2, 页码 1457-1468

出版社

SPRINGER
DOI: 10.1007/s11071-014-1753-y

关键词

Adaptive backstepping; Fuzzy control; Robotics; Underactuated systems; External disturbance

向作者/读者索取更多资源

In this paper, the control problem of underactuated systems with mismatched and matched uncertainties is addressed. Adaptive fuzzy backstepping controller is proposed to solve the problem, ensuring the robustness against uncertainties and disturbances. Taking a general class of underactuated robotic systems into account, the nonlinear dynamical equations are first transformed to the so-called cascade form and then, an adaptive-based controller is constructed using the capability of fuzzy logic to tackle the perturbations. From the analytic point of view, the closed loop stability is ensured using the Lyapunov stability theorem. To demonstrate the effectiveness of the method, the proposed controller has been applied to a two-wheeled self-balancing robot with three degrees of freedom, and also to a pendubot with two degrees of freedom. In order to highlight the superiority of the proposed algorithm, the performance is compared with that of an existing robust strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据