4.5 Article

Protective Effects of Hesperidin Against Amyloid-β (Aβ) Induced Neurotoxicity Through the Voltage Dependent Anion Channel 1 (VDAC1)-Mediated Mitochondrial Apoptotic Pathway in PC12 Cells

期刊

NEUROCHEMICAL RESEARCH
卷 38, 期 5, 页码 1034-1044

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-013-1013-4

关键词

Hesperidin; Amyloid-beta; Voltage-dependent anion channel 1; Mitochondria

资金

  1. Henan University of Science and Technology [09001664]

向作者/读者索取更多资源

Amyloid-beta (A beta) is known to exert cytotoxic effects by inducing mitochondrial dysfunction. Additionally, the mitochondrial voltage-dependent anion channel 1 (VDAC1), which is involved in the release of apoptotic proteins with possible relevance in Alzheimer's disease (AD) neuropathology, plays an important role in maintaining mitochondrial function and integrity. However, the application of therapeutic drugs, especially natural products in (AD) therapy via VDAC1-regulated mitochondrial apoptotic pathway has not aroused extensive attention. In the present study, we investigated neuroprotective effects of hesperidin, a bioactive flavonoid compound, on A beta(25-35)-induced neurotoxicity in PC12 cells and also examined the potential cellular signalling mechanism. Our results showed that treatment with hesperidin significantly inhibited A beta(25-35)-induced apoptosis by reversing A beta-induced mitochondrial dysfunction, including the mitochondrial permeability transition pore opening, intracellular free calcium increase and reactive oxygen species production. Further study indicated that hesperidin can increase the level of VDAC1 phosphorylation through enhancing the activity of the glycogen synthasekinase-3 beta and decrease the level of hexokinaseI in mitochondrial, resulting in mitochondrial release of cytochrome c. Furthermore, hesperidin inhibited mitochondria-dependent downstream caspase-mediated apoptotic pathway, such as that involving caspase-9 and caspase-3. These results demonstrate that hesperidin can protect A beta-induced neurotoxicity via VDAC1-regulated mitochondrial apoptotic pathway, and they raise the possibility that hesperidin could be developed into a clinically valuable treatment for AD and other neuronal degenerative diseases associated with mitochondrial dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据