4.5 Article

Decorrelation by Recurrent Inhibition in Heterogeneous Neural Circuits

期刊

NEURAL COMPUTATION
卷 25, 期 7, 页码 1732-1767

出版社

MIT PRESS
DOI: 10.1162/NECO_a_00451

关键词

-

资金

  1. U.S. National Institutes of Health [R01 MH062349]
  2. Swartz Foundation

向作者/读者索取更多资源

The activity of neurons is correlated, and this correlation affects how the brain processes information. We study the neural circuit mechanisms of correlations by analyzing a network model characterized by strong and heterogeneous interactions: excitatory input drives the fluctuations of neural activity, which are counterbalanced by inhibitory feedback. In particular, excitatory input tends to correlate neurons, while inhibitory feedback reduces correlations. We demonstrate that heterogeneity of synaptic connections is necessary for this inhibition of correlations. We calculate statistical averages over the disordered synaptic interactions and apply our findings to both a simple linear model and a more realistic spiking network model. We find that correlations at zero time lag are positive and of magnitude K-1/2, where K is the number of connections to a neuron. Correlations at longer timescales are of smaller magnitude, of order K-1, implying that inhibition of correlations occurs quickly, on a timescale of K-1/2. The small magnitude of correlations agrees qualitatively with physiological measurements in the cerebral cortex and basal ganglia. The model could be used to study correlations in brain regions dominated by recurrent inhibition, such as the striatum and globus pallidus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据