4.8 Article

Thermal conductivity of suspended few-layer MoS2

期刊

NANOSCALE
卷 10, 期 6, 页码 2727-2734

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr07522g

关键词

-

资金

  1. National Key R&D Program of China [2017YFB0406000]
  2. National Natural Science Foundation of China [11674245, 11334007, 11774278]
  3. Shanghai Committee of Science and Technology in China [17142202100, 17ZR1447900, 17ZR1448000]
  4. Fundamental Research Funds for Central Universities [2012jdgz04]

向作者/读者索取更多资源

Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline-amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

How coherence is governing diffuson heat transfer in amorphous solids

Zhongwei Zhang, Yangyu Guo, Marc Bescond, Jie Chen, Masahiro Nomura, Sebastian Volz

Summary: By using a heat conduction theory incorporating coherence, this study reveals that the strong phase correlation between local and non-propagating modes triggers thermal transport in amorphous materials. It further provides insights into the temperature and length dependences of thermal conductivity and uncovers the wave nature of thermal vibrations.

NPJ COMPUTATIONAL MATERIALS (2022)

Article Materials Science, Multidisciplinary

A Qualitative Study of the Disorder Effect on the Phonon Transport in a Two-Dimensional Graphene/h-BN Heterostructure

Yinong Liu, Weina Ren, Meng An, Lan Dong, Lei Gao, Xuxia Shai, Tingting Wei, Linru Nie, Shiqian Hu, Chunhua Zeng

Summary: Efforts have been made to control phonon transport through introducing disorder, while materials informatics has shown accurate prediction ability in studying new materials. However, expanding the design space with disorder makes global optimization nearly impossible. This study investigates the effect of different types of disorders on phonon transport in a two-dimensional heterostructure and finds that introducing disorder significantly reduces thermal conductivity.

FRONTIERS IN MATERIALS (2022)

Article Physics, Multidisciplinary

Fast prediction of the mechanical response for layered pavement under instantaneous large impact based on random forest regression

Ming-Jun Li, Lina Yang, Deng Wang, Si-Yi Wang, Jing-Nan Tang, Yi Jiang, Jie Chen

Summary: Traditional methods cannot non-destructively and quickly detect the internal structure of pavements, so it is important to accurately and quickly predict the mechanical properties of layered pavements. In recent years, machine learning has shown great superiority in solving nonlinear problems. This paper proposes a method based on random forest regression to predict the maximum deflection and damage factor of layered pavements under instantaneous large impact using the deflection basin parameters obtained from falling weight deflection testing. The prediction results have high consistency with finite element simulation results, indicating the potential of this method in non-destructive evaluation of pavement structure.

CHINESE PHYSICS B (2023)

Article Physics, Multidisciplinary

Anomalous enhancement of the Nernst effect at the crossover between a Fermi liquid and a strange metal

Yusen Yang, Qian Tao, Yuqiang Fang, Guoxiong Tang, Chao Yao, Xiaoxian Yan, Chenxi Jiang, Xiangfan Xu, Fuqiang Huang, Wenxin Ding, Yu Wang, Zhiqiang Mao, Hui Xing, Zhu-An Xu

Summary: A strange-metal state, which appears in many strongly correlated materials, has been studied to understand its nature and properties. In this study, a large Nernst response is observed in a two-dimensional superconductor 2M-WS2, suggesting a change in carrier entropy when entering the strange-metal state. This anomalous Nernst response is further confirmed in other iconic strange metals, indicating its universality and providing experimental constraints on the mechanism of strange metals.

NATURE PHYSICS (2023)

Editorial Material Chemistry, Multidisciplinary

Introduction: Thermal Materials and Technology

Baowen Li, Jianfang Wang, Tao Deng

CHEMICAL REVIEWS (2023)

Article Chemistry, Multidisciplinary

Universal Behavior of Highly Confined Heat Flow in Semiconductor Nanosystems: From Nanomeshes to Metalattices

Brendan McBennett, Albert Beardo, Emma E. Nelson, Begon Abad, Travis D. Frazer, Amitava Adak, Yuka Esashi, Baowen Li, Henry C. Kapteyn, Margaret M. Murnane, Joshua L. Knobloch

Summary: Nanostructuring allows control over heat flow in semiconductors, but bulk models are limited by boundary effects and first-principles calculations are computationally expensive. We use extreme ultraviolet beams to study phonon transport in a nanostructured silicon metalattice and observe reduced thermal conductivity. We develop a predictive theory that explains this behavior based on nanoscale confinement effects.

NANO LETTERS (2023)

Article Materials Science, Multidisciplinary

Carbon honeycomb structure with high axial thermal transport and strong robustness

Wei-Jun Ren, Shuang Lu, Cui-Qian Yu, Jia He, Jie Chen

Summary: The carbon honeycomb structure has both high in-plane thermal conductivity and high axial thermal conductivity, which is robust to structural disorder. This study suggests that the carbon honeycomb structure has unique advantages to serve as a thermal management material.

RARE METALS (2023)

Article Physics, Multidisciplinary

Phonon Focusing Effect in an Atomic Level Triangular Structure

Jian-Hui Jiang, Shuang Lu, Jie Chen

Summary: The rise of artificial microstructures has allowed for the modulation of various waves, including light, sound, and heat. In this study, we propose an atomic level triangular structure in single-layer graphene to achieve the phonon focusing effect. Our simulation results demonstrate that the height of the triangular structure can control multiple features related to the phonon focusing effect in the positive incident direction. Additionally, a distinct focusing pattern and enhanced energy transmission coefficient are observed in the reverse incident direction. Fourier transform analysis provides insights into the mode conversion physics of the phonon wave packet.

CHINESE PHYSICS LETTERS (2023)

Article Physics, Condensed Matter

Thermal resistance network model for thermal conductivity of normal liquid helium-4 and helium-3

Dan Huang, Jinxing Zhong, Saqlain Raza, Ran Niu, Baishan Fu, Dapeng Yu, Tsuneyoshi Nakayama, Jun Liu, Jun Zhou

Summary: In this work, the thermal conductivities of normal liquid helium-4 (He I) and helium-3 were calculated using the thermal resistance network model. The predicted values are not only in good agreement with the measurements, but also reproduce the experimental trend of thermal conductivity increasing with temperature and pressure.

JOURNAL OF PHYSICS-CONDENSED MATTER (2023)

Article Physics, Applied

Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures

Weijun Ren, Shuang Lu, Cuiqian Yu, Jia He, Zhongwei Zhang, Jie Chen, Gang Zhang

Summary: In this study, non-equilibrium molecular dynamics simulations were used to investigate the in-plane thermal conductivity of graphene/hexagonal boron nitride (h-BN) moire superlattices. It was found that the in-plane thermal conductivity decreases monotonically with increasing interlayer rotation angle within a small range. The atomic stress amplitude exhibits a periodic distribution corresponding to the structural moire pattern. The analysis at the atomic level revealed a competition between the magnitude and directional change of the in-plane heat flow, with the directional change playing a dominant role in determining the in-plane thermal conductivity. The decreasing trend of in-plane thermal conductivity at small rotation angles was explained by the reduced low-frequency phonon transmission and the blue shift of the transmission peak.

APPLIED PHYSICS REVIEWS (2023)

Article Materials Science, Multidisciplinary

Assessing phonon coherence using spectroscopy

Zhongwei Zhang, Yangyu Guo, Marc Bescond, Masahiro Nomura, Sebastian Volz, Jie Chen

Summary: In this paper, a theoretical model for exploring phonon coherence based on spectroscopy is proposed and validated using Brillouin light scattering data and molecular dynamic simulations. The model shows that confined modes exhibit wavelike behavior with a higher ratio of coherence time to lifetime. The spectroscopy data also demonstrates the dependence of phonon coherence on system size. The proposed model allows for reassessing conventional spectroscopy data to obtain coherence times, which are crucial for understanding and estimating phonon characteristics and heat transport in solids.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Characteristics of distinct thermal transport behaviors in single-layer and multilayer graphene

Cuiqian Yu, Shuyue Shan, Shuang Lu, Zhongwei Zhang, Jie Chen

Summary: Through molecular dynamics simulations, the fundamental characteristics of second sound are explored in a transient heat conduction modeling in single-layer and multilayer graphene and graphite. The results demonstrate that second sound can carry more heat energy and maintain for a longer lifetime than ballistic pulse. The effects of thickness and temperature on second sound propagation are also investigated.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Abnormal phonon angular momentum due to off-diagonal elements in the density matrix induced by a temperature gradient

Jinxin Zhong, Hong Sun, Yang Pan, Zhiguo Wang, Xiangfan Xu, Lifa Zhang, Jun Zhou

Summary: A nonzero mean value of phonon angular momentum (PAM) can be generated in chiral materials with a temperature gradient. By using the Kubo formula, we investigated the contributions of both intraband and interband terms of PAM to the mean PAM. Interestingly, the interband term was found to be equally important as the intraband term, indicating the strong influence of quantum transition between different phonon branches induced by a temperature gradient on local atomic rotation. This discovery introduces an alternative mechanism for generating PAM and phonon magnetic moments.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Photon-assisted electron transport across a quantum phase transition

Lei-Lei Nian, Shiqian Hu, Long Xiong, Jing-Tao Lu, Bo Zheng

Summary: A nonlinear QD-cQED setup is proposed to enhance photon-to-electron conversion by utilizing quantum phase transition. It is found that there is an increased energy transfer from photon to electron systems near the phase transition, leading to an enhancement in photocurrent.

PHYSICAL REVIEW B (2023)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)