4.6 Review

Astrocyte-Derived Sonic Hedgehog Contributes to Angiogenesis in Brain Microvascular Endothelial Cells via RhoA/ROCK Pathway After Oxygen-Glucose Deprivation

期刊

MOLECULAR NEUROBIOLOGY
卷 47, 期 3, 页码 976-987

出版社

SPRINGER
DOI: 10.1007/s12035-013-8396-8

关键词

Tube formation; Oxygen-glucose deprivation; Sonic hedgehog; RhoA; Brain microvascular endothelial cells

资金

  1. National Natural Science Foundation of China [81070938, 81101905]
  2. New Century Excellent Talents in University [NCET-10-0406]
  3. Fundamental Research Funds for the Central Universities, HUST [2010JC028]

向作者/读者索取更多资源

The human adult brain possesses intriguing plasticity, including neurogenesis and angiogenesis, which may be mediated by the activated sonic hedgehog (Shh). By employing a coculture system, brain microvascular endothelial cells (BMECs) cocultured with astrocytes, which were incubated under oxygen-glucose deprivation (OGD) condition, we tested the hypothesis that Shh secreted by OGD-activated astrocytes promotes cerebral angiogenesis following ischemia. The results of this study demonstrated that Shh was mainly secreted by astrocytes and the secretion was significantly upregulated after OGD. The proliferation, migration, and tube formation of BMECs cocultured with astrocytes after OGD were significantly enhanced, but cyclopamine (a Shh antagonist) or 5E1 (an antibody of Shh) reversed the change. Furthermore, silencing Ras homolog gene family, member A (RhoA) of BMECs by RNAi and blocking Rho-dependent kinase (ROCK) by Y27632, a specific antagonist of ROCK, suppressed the upregulation of proliferation, migration, and tube formation of BMECs after OGD. These findings suggested that Shh derived from activated astrocytes stimulated RhoA/ROCK pathway in BMECs after OGD, which might be involved in angiogenesis in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据