4.3 Article Proceedings Paper

Field failure mechanism study of solder interconnection for crystalline silicon photovoltaic module

期刊

MICROELECTRONICS RELIABILITY
卷 52, 期 9-10, 页码 2326-2330

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.microrel.2012.06.027

关键词

-

向作者/读者索取更多资源

This study investigates a solder interconnection failure of a 25-year-old crystalline silicon photovoltaic (c-Si PV) module and draws conclusions on the failure mechanism of the solder interconnection. The efficiency degradation of the 25-year-old c-Si PV module is -23%. Physical analysis of the solder interconnection failure finds solder to solder cracking and solder to Ag paste cracking. The main failure mechanism of the solder interconnection crack is caused by coefficient of thermal expansion (CTE) mismatch between the module material and the ribbon wire solder as shown by FMEA. To demonstrate the failure mechanism, a thermal cycle test is designed and conducted on a small c-Si PV module. The temperature cycle condition is -45 degrees C to 85 degrees C and the dwell time is 20 min. Measurements are carried out every 100 cycles monitoring the series resistance (Rs) through dark I-V. The result shows that Rs increases. After 1,000 cycles, the characteristics of dark I-V and light I-V are compared and analyzed. Failure mechanism analysis is conducted for the modules for which Pmax decreased with 20%. Water-jet techniques for cross-section and SEM are used to analyze the factor of resistance change and efficiency degradation. The failure mechanism of solder interconnection for c-Si PV Module is proved. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Engineering, Electrical & Electronic

Current imbalance analysis of multichip influenced by parasitic inductance within PP-IEGT

Zhiqiang Wang, Siyang Dai, Yao Zhao, Guofeng Li, Bing Ji, Volker Pickert, Bowen Gu, Shuai Ding

Summary: This paper proposes a lumped-charge model for IEGT single chip, considering the effect of carrier injection enhancement in the emitter. The parasitic inductance of the parallel branches in PP-IEGT is extracted using Ansys simulation, and the validity of Ansys simulation is verified. Furthermore, the switching inconsistency is evaluated by combining the electrical model and the effect of mutual inductance, and it is found that mutual inductance is an important factor influencing electrical parameter distribution.

MICROELECTRONICS RELIABILITY (2024)

Article Engineering, Electrical & Electronic

Wavelet-based rapid identification of IGBT switch breakdown in voltage source converter

Sankha Subhra Ghosh, Surajit Chattopadhyay, Arabinda Das, Nageswara Rao Medikondu, Abdulkarem H. M. Almawgani, Adam R. H. Alhawari, Sudipta Das

Summary: This article describes a method for identifying the IGBT switch breakdown failure in a 3-phase, 3-level Voltage Source Converter linked to the photovoltaic grid. Comparative learning has been used to detect the specific parameter suitable for the detection of the failure.

MICROELECTRONICS RELIABILITY (2024)

Article Engineering, Electrical & Electronic

Bond-pad damage in ultrasonic wedge bonding

Milad Khajehvand, Henri Seppanen, Panthea Sepehrband

Summary: Using SEM/EDX analysis, microscale fracture at the bond-pad is detected during the wedge bonding process of Cu wire to a Cu or Al substrate. It is observed that the fracture of the bond leads to the formation of a bulge on the wire and a cavity in the substrate, causing fracture in the original substrate. 3D optical profiler reveals that the depth, radius, and surface area of the cavity increase with bond time for a constant bond force and power. These metrics are suggested as new factors for optimizing the wedge bonding process. The optimal bonding parameters should maximize the cavity's surface area (related to bond's pull force) while minimizing the cavity's depth relative to the substrate's thickness to avoid substrate damage. Furthermore, Molecular Dynamics simulations propose a potential plastic deformation mechanism for bond-pad damage, suggesting the benefits of using a small-grain-sized substrate, low transducer's vibration amplitude, and high transducer's frequency to minimize the cavity's depth.

MICROELECTRONICS RELIABILITY (2024)