4.6 Article

Controllable chemical reaction synthesis of Tb(OH)3 nanorods and their photoluminescence property

期刊

MATERIALS LETTERS
卷 63, 期 13-14, 页码 1180-1182

出版社

ELSEVIER
DOI: 10.1016/j.matlet.2009.02.037

关键词

Crystal growth; Nanomaterials; Luminescence

资金

  1. 973 project [2007CB13403]
  2. PCSIRT [0651]
  3. Program for New Century Excellent Talents in University and Zijin Project

向作者/读者索取更多资源

A novel and simple chemical reaction method has been developed to synthesize the Tb(OH)(3) nanorods with diameters of 20-30 nm and lengths of about 300 nm at 90 degrees C using cyclohexylamine as the alkaline source. The formation mechanism for the synthesis of the Tb(OH)(3) nanostructures with different morphologies has been primarily discussed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Electroluminescence from light-emitting device with erbium-doped TiO2 film sputtered onp+-Si substrate: Enhancement effect of codoping zirconium

Chengtao Xia, Linlin Lu, Weijun Zhu, Jinxin Chen, Jiahao Cao, Deren Yang, Xiangyang Ma

Summary: By codoping zirconium (Zr) into the TiO2 host, the erbium (Er)-related visible and near-infrared electroluminescence from the TiO2:Er/p(+)-Si heterostructured LED can be significantly enhanced. The substitution of oversized Zr4+ ions for Ti4+ ions in the TiO2 lattice leads to a slightly distorted crystal field for the incorporated Er3+ ions, increasing the intra-4f transition probabilities and enhancing the characteristic visible and near-infrared emissions.

THIN SOLID FILMS (2022)

Article Physics, Applied

Kick-out diffusion of Al in 4H-SiC: an ab initio study

Yuanchao Huang, Yixiao Qian, Yiqiang Zhang, Deren Yang, Xiaodong Pi

Summary: Research shows that the diffusion of aluminum in 4H silicon carbide is actually mediated by silicon interstitials, with a lower activation energy compared to diffusion mediated by carbon vacancies. Experimental results are consistent with computational findings.

JOURNAL OF APPLIED PHYSICS (2022)

Article Physics, Applied

The influence of A-site dipole moment on iodine migration in perovskite films revealed by transient ion drift

Biao Li, Xuehui Xu, Yuxin Yao, Pengjie Hang, Chenxia Kan, Ying Wang, Yiqiang Zhang, Yang (Michael) Yang, Deren Yang, Xuegong Yu

Summary: This study investigates the influence of the dipole moment of A-site ions on the migration of iodine ions in perovskite films. It finds that a decrease in the dipole moment of A-site ions leads to a decrease in the activation energy of iodine ions. Therefore, increasing the dipole moment of A-site ions can be an effective strategy for suppressing iodine migration in perovskite films and enhancing the long-term stability of PSCs.

APPLIED PHYSICS LETTERS (2022)

Article Physics, Applied

Effect of hydrogen on the unintentional doping of 4H silicon carbide

Yuanchao Huang, Rong Wang, Naifu Zhang, Yiqiang Zhang, Deren Yang, Xiaodong Pi

Summary: This study investigates the role of hydrogen in the growth of HPSI 4H-SiC single crystals, revealing that it significantly mitigates N doping while hardly affecting B doping. The study also reveals that adjusting the relative B and N doping concentrations has a substantial impact on the Fermi energy of HPSI 4H-SiC.

JOURNAL OF APPLIED PHYSICS (2022)

Article Engineering, Electrical & Electronic

Current Driving Er-Doped Electroluminescence Devices With Long-Term Reliability

Jie Hu, Houwei Pang, Yuan Wang, Deren Yang, Dongsheng Li

Summary: A long-term reliable Erbium doped light emitting device based on npn heterojunction structure has been developed. The device demonstrates a linear relation between the electroluminescence intensity of Er3+ ions and the operating currents. The device with a 3V onset voltage can operate for over 1200 hours due to the separation and acceleration of electrons that excite Er3+ ions. This npn heterojunction device structure can also be applied to other rare earths like Tm, Eu, etc., which opens up possibilities for electroluminescence of rare earths and integrated silicon photonics.

IEEE ELECTRON DEVICE LETTERS (2023)

Article Chemistry, Physical

Enhanced Optical and Electronic Properties of Silicon Nanosheets by Phosphorus Doping Passivation

Ye Lei, Deren Yang, Dongsheng Li

Summary: In this study, the spin-on-dopant technique was used to phosphorus dope soft-chemical-prepared silicon nanosheets, leading to improved photoelectric properties. It was observed that the doped samples exhibited approximately a 4-fold increase in luminescence intensity and luminescence lifetime compared to the undoped samples, attributed to the passivation of surface defects by phosphorus doping. Additionally, the combination of phosphorus doping and high-temperature heat treatment resulted in a 6-fold reduction in resistivity of multilayer silicon nanosheets compared to as-prepared samples. Overall, this research brings soft-chemical-prepared silicon nanosheets one step closer to practical application in optoelectronics.

MATERIALS (2023)

Article Chemistry, Multidisciplinary

Facile synthesis of defect-rich RuCu nanoflowers for efficient hydrogen evolution reaction in alkaline media

Liang Ji, Sai Luo, Lei Li, Ningkang Qian, Xiao Li, Junjie Li, Jingbo Huang, Xingqiao Wu, Hui Zhang, Deren Yang

Summary: Developing high-performance electrocatalysts for hydrogen evolution reaction in alkaline media is challenging but desirable for water splitting. A wet chemistry method was used to synthesize RuCu nanoflowers with tunable atomic ratios. The Ru3Cu NFs exhibited excellent catalytic properties, requiring only 55 mV for a current density of 10 mA cm(-2) and showing minimal decay after 2000 cycles. The flower-like structure and introduction of Cu improved the HER performance by providing more active sites and modulating the electronic structure of Ru.

NANOSCALE ADVANCES (2023)

Article Physics, Applied

Impurities and defects in 4H silicon carbide

Rong Wang, Yuanchao Huang, Deren Yang, Xiaodong Pi

Summary: The widespread application of 4H silicon carbide (4H-SiC) is imminent due to the increasing fabrication of high-power electronics based on 4H-SiC, promoting low-carbon development worldwide. Additionally, researchers are intensively exploring 4H-SiC as a platform for wafer-scale integration of semiconductor and quantum technologies in the field of quantum technologies. Given the significance of impurities and defects in semiconductors, a comprehensive understanding of impurities and defects in 4H-SiC is crucial. This Perspective summarizes recent experimental and theoretical advancements in impurity and defect research in 4H-SiC, along with a brief historical overview. Furthermore, the discussion covers impurity engineering and defect engineering to fully realize the potential of 4H-SiC, followed by an outline of the challenges in studying impurities and defects in 4H-SiC.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

Crack healing behavior of 4H-SiC: Effect of dopants

Xiaoshuang Liu, Yazhe Wang, Xi Zhang, Yunhao Lu, Rong Wang, Deren Yang, Xiaodong Pi

Summary: We investigated the crack-healing mechanism of 4H silicon carbide (4H-SiC) and found that high-temperature thermal annealing in the air atmosphere effectively heals indentation-induced cracks in undoped 4H-SiC by the formation and viscous flow of SiO2. Nitrogen doping assists the atomic diffusion and crack healing of 4H-SiC, while vanadium doping hinders the healing process. The padding of glassy SiO2 is found to effectively recover the bending strength of indented 4H-SiC samples.

JOURNAL OF APPLIED PHYSICS (2023)

Article Engineering, Electrical & Electronic

Effect of Erbium Incorporation on SiNxOy/c-Si Interface in Silicon-Based Optoelectronic Devices

Lei Yang, Yuxuan Fan, Xiang Lv, Houwei Pang, Shuai Yuan, Xuegong Yu, Dongsheng Li, Deren Yang

Summary: This work investigates the influence of erbium (Er) doping on the SiNxOy/c-Si interface, and found that activated Er3+ ions can result in a higher positive charge density, leading to band bending and deeper depletion regions. Through deep-level transient spectroscopy (DLTS), a higher density of interface states and wider energy distribution were observed in the Er-doped samples. Energy dispersive X-ray spectroscopy (EDX) analysis further supports the interaction between Er impurities and intrinsic defects at the interface.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Multidisciplinary Sciences

Anti-reflection effect of high refractive index polyurethane with different light trapping structures on solar cells

Shengxuan Wang, Hao Cui, Sijia Jin, Xiaodong Pi, Haiyan He, Chunhui Shou, Deren Yang, Lei Wang

Summary: A new anti-reflection strategy is proposed in this study, using soft nanoimprint lithography to prepare textured structures on the outside of SiNx films. Experimental results show that these textured structures have wide spectrum anti-reflection performance.

HELIYON (2023)

Article Chemistry, Multidisciplinary

Numerical analysis of the dislocation density in n-type 4H-SiC

Sheng'ou Lu, Hongyu Chen, Wei Hang, Rong Wang, Julong Yuan, Xiaodong Pi, Deren Yang, Xuefeng Han

Summary: The effect of nitrogen doping on dislocation proliferation in SiC crystals was investigated. The thermal field and thermal stress during PVT growth were calculated, and the dislocation density was calculated based on the Alexander-Haasen model. By comparing the calculation and experimental results, a possible value of effective stress was proposed to evaluate the effect of nitrogen doping on dislocation density in n-type SiC.

CRYSTENGCOMM (2023)

Article Chemistry, Multidisciplinary

Lattice engineering of AuPd@Pt core-shell icosahedra for highly efficient electrocatalytic ethanol oxidation

Ningkang Qian, Degong Ding, Liang Ji, Junjie Li, Hui Zhang, Deren Yang

Summary: In this study, three types of core-shell nanocrystals, Au73Pd27@Pt, Au66Pd34@Pt, and Pd@Pt, were successfully constructed using lattice engineering. The strain effect and ligand effect caused by Au were found to enhance the activity of Pt in the electrocatalytic CO2 reduction reaction (EOR). In situ FTIR studies confirmed that the EOR processes on these nanocrystals were dominated by the C2 pathway, which explained the enhancement of EOR activity by the faster kinetics of the C2 pathway producing acetate or acetaldehyde.

CRYSTENGCOMM (2023)

Article Materials Science, Multidisciplinary

F-doped Co3O4 with Pt-like activity and excellent stability for hydrogen evolution reaction in alkaline media

Deyong Zheng, Huihui Jin, Yucong Liao, Pengxia Ji

Summary: In this study, a highly stable and efficient catalyst, fluorine-doped Co3O4 (F-Co3O4), was developed for hydrogen production by water electrolysis. The F-Co3O4 catalyst exhibited a remarkable reduction in overpotential and demonstrated excellent stability for over 100 hours.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of the addition of Cu6Sn5 nanoparticles on the growth of intermetallic compounds at the interfaces of Sn3.0Ag0.5Cu solder joints

Ziwen Lv, Jintao Wang, Fengyi Wang, Jianqiang Wang, Fuquan Li, Hongtao Chen

Summary: Adding Cu6Sn5 nano particles can effectively inhibit the overgrowth of intermetallic compounds at the interfaces of solder joints in electronic devices, providing a solution to this issue. A new growth mechanism of intermetallic compounds at the interfaces was identified.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

BiOI/AgI/Ag plasmonic heterostructure for efficient photoelectrochemical water splitting

Jun Wang, Jiawei Chen, Wanru Liao, Fangyang Liu, Min Liu, Liangxing Jiang

Summary: A BiOI/AgI/Ag plasmonic heterostructure photocathode was successfully designed through electrodeposition, ion-exchange, and illumination methods. This photocathode exhibits superior performance in photoelectrochemical water splitting.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Ni@O-doped carbon Mott-Schottky heterojunctions to enhance sulfur conversion kinetics

Xiaoxiao Liu, Xianxian Zhou, Xiaotao Ma, Qinbo Yuan, Shibin Liu

Summary: In this study, the authors propose a method to accelerate the reaction of polysulfides in lithium-sulfur batteries using a Ni@OC Mott-Schottky heterojunction as a catalyst. The experimental results demonstrate that the charge redistribution at the Ni@OC interface accelerates electron transfer and enhances catalytic activity, leading to improved reaction kinetics and battery performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of fixture boundary conditions for low-velocity impact: A focus on composites with different matrix and fibers

Dayou Ma, Mohammad Rezasefat, Joziel Aparecido da Cruz, Sandro Campos Amico, Marco Giglio, Andrea Manes

Summary: The matrix has a significant effect on the impact resistance of composite materials. Replacing a brittle polymer with a more flexible one can improve impact resistance, but it poses challenges to standard testing methods. This study designs a new fixture for testing the low-velocity impact of soft composites and investigates the effect of the fixture on the mechanical performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Synergistic effect of defects and heterostructures endowing bronze titanium dioxide with superior lithium storage performances

Lingchang Wang, Qihang Yang, Huzhen Li, Ming Wei, Qian Wang, Zhenzhong Hu, Mengmeng Zhen

Summary: Bronze titanium dioxide (TiO2(B)) is a promising anode material for lithium-ion batteries due to its high specific capacity. However, its practical applications are hindered by poor conductivity and limited electrochemical kinetics. In this study, TiO2(B)-carbon nanosheets heterostructures are synthesized to enhance the cycling performance and rate capability of TiO2(B).

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Sustained electromagnetic parameters of barium ferrite and epoxy nanocomposites for patch antenna miniaturization over GHz frequency range

Atul Thakur, Ritesh Verma, Ankush Chauhan, Fayu Wan, Preeti Thakur

Summary: In this study, BaFe12O19 and BaFe12O19: Epoxy (50:50) nanocomposites were synthesized using the co-precipitation method. The structural information and material properties, such as crystallite size and electrical conductivity, were characterized by XRD, FESEM, EDX, and TEM techniques.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

In-situ construction of CoS2@NC hierarchical binder-free cathode for advanced Li-CO2 batteries

Jingyu Wu, Xinyan Ma, Yong Yang

Summary: A well-defined CoS2@NC(CS-500) hierarchical binder-free catalyst cathode is constructed through in-situ grown of ZIF-67 on carbon cloth and high-temperature carbonization. The cathode shows excellent reaction kinetics and electrochemical performance, providing inspiration for developing advanced Li-CO2 battery catalysts.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

K5Eu1-xHox(MoO4)4: Structures and luminescence properties

Svetlana M. Posokhova, Vladimir A. Morozov, Kirill N. Boldyrev, Dina Deyneko, Erzhena T. Pavlova, Bogdan I. Lazoryak

Summary: This study explores the impact of synthesis method and composition on the structure and luminescence properties of K5Eu1-xHox(MoO4)4 with the palmierite-type matrix. The co-doping of Eu3+ and Ho3+ ions plays a critical role in manipulating charge transfer and luminescence efficiency in the visible and infrared regions.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Benzonitrile/pyridylbenzoimidazole hybrid electron-transport material for efficient phosphorescence and TADF OLEDs

Jian Wang, Yeting Tao, Jingsheng Wang, Youtian Tao

Summary: A new electron-transport material iTPyBI-CN is developed through non-catalytic C-N coupling reaction. It exhibits better electroluminescence efficiency in organic light-emitting diodes compared to the commercial material TPBI, due to its twisted geometry and higher energy levels.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Microscopic characteristics and thermodynamic property changes in limestone under high-temperature treatment

Tao Zhu, Feng Huang, Shuo Li, Yang Zhou

Summary: This article combines XRD analysis and microscopic structural observation to investigate the changes in limestone after high-temperature treatment. It finds that 500 degrees C is the critical temperature for crystalline and spatial arrangement changes in limestone, and the thermal conductivity, specific heat capacity, and heat storage coefficient gradually decrease after thermal treatment.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Novel synthesis of ZnO nanostructure from galvanization waste for antibacterial application

Muhammad Haekal Habibie, Fransiska Sri Herwahyu Krismastuti, Abdi Wira Septama, Faiza Maryani, Vivi Fauzia

Summary: This study focuses on the synthesis of zinc oxide nanostructure from zinc recovered from galvanization ash and highlights its potential as a sustainable source of zinc and as an antibacterial agent.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Biomimetic mineralization engineered phycocyanin with improved stability and antioxidantive activity under environmental stress

Jingyi Li, Yixin Xing, Wei Gu, Shousi Lu

Summary: In this study, PC@CaP microparticles were fabricated using biomimetic mineralization. The results showed that under environmental stress, PC@CaP exhibited improved stability and antioxidative activity, indicating its potential use in high-added value fields.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

ZIF-8 nanoparticles combined with fibroin protein co-modified TiO2 nanotube arrays to construct a drug sustained-release platform

Yan Liu, Shunyou Chen

Summary: In this study, TNTs were used as a drug carrier and modified with ZIF-8 and silk fibroin to obtain a new drug loading platform. The results showed that this drug-loaded platform had a good drug release effect in vitro and could promote cell proliferation and osteogenic differentiation.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Observation of stacking faults in ε-phase InSe crystal

Chunhui Zhu, Wentao Wang, Qing Zhen, Xinning Huang, Shixin Li, Shaochang Wang, Xiaoping Ma, Xiaoxia Liu, Yalong Jiao, Kai Sun, Zhuangzhi Li, Huaixin Yang, Jianqi Li

Summary: A type of stacking fault is revealed in e-InSe crystal, which is associated with a small stacking-fault energy and shows exceptional plasticity.

MATERIALS LETTERS (2024)