4.6 Article

Microstructural design of connective base cells for functionally graded materials

期刊

MATERIALS LETTERS
卷 62, 期 24, 页码 4022-4024

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matlet.2008.05.058

关键词

functionally graded materials; free-form fabrication; homogenization; heat conduction; topology optimization

向作者/读者索取更多资源

Control of compositions and microstructures plays a significant role on developing functionally graded material (FGM). The existing fabrication technologies allow placing multiple compositions in such a way that a desirable gradient of effective physical properties can be achieved. It is interesting to explore how to design microstructure for the same purpose. This paper introduces an inverse homogenization procedure to FGM design. A quasi-periodic base cell (PBC) is optimized for attaining a specific gradient of Young's modulus. To ensure proper connectivity between adjacent PBCs, heat sinks originally used in thermal conduction problem are employed as connection constraints. The capability of this technique is demonstrated by the examples of FGM microstructural design. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Computer Science, Interdisciplinary Applications

A nodal-based evolutionary optimization algorithm for frame structures

Xuyu Zhang, Yi Min Xie, Shiwei Zhou

Summary: This study proposes a nodal-based evolutionary design optimization algorithm for designing frame structures. By using Delaunay triangulation as the edge boundary, it extends the space of admissible solutions and reduces the number of design variables. Through sensitivity analysis and the method of moving asymptotes, the optimal structure can be obtained within a few iterations.

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING (2023)

Article Geriatrics & Gerontology

IL-17A promotes endothelial cell senescence by up-regulating the expression of FTO through activating JNK signal pathway

Na Li, Runan Luo, Wenlong Zhang, Yu Wu, Chaojie Hu, Manli Liu, Diya Jiang, Ziran Jiang, Xinxin Zhao, Yiping Wang, Qing Li

Summary: The study reveals that IL-17A can promote endothelial cell aging by activating the JNK signaling pathway and upregulating FTO expression. This discovery is significant for the identification of new therapeutic targets against endothelial cell aging and related vascular complications.

BIOGERONTOLOGY (2023)

Article Mechanics

Effect of thermal and hydrothermal aging on the crashworthiness of carbon fiber reinforced plastic composite tubes

Wen Zuo, Quantian Luo, Qing Li, Guangyong Sun

Summary: Thin-walled structures made of fiber reinforced composites are commonly used in engineering practice, but there is limited research on their residual properties after high temperature and hygrothermal aging. This experimental investigation aims to study the effects of moisture absorption and high temperatures on the mechanical characteristics of fiber reinforced plastic composite tubes. The study found that crashworthiness characteristics decrease significantly with increased temperature and moisture absorption rate. The failure modes varied and were influenced by the glass transition temperature of the matrix. Moisture absorption had two stages and was affected by temperature. Microscopically, the morphology and bonding conditions between fiber and resin changed significantly due to temperature and hydrothermal aging.

COMPOSITE STRUCTURES (2023)

Article Engineering, Biomedical

Nondeterministic multiobjective optimization of 3D printed ceramic tissue scaffolds

Ali Entezari, Nai-Chun Liu, Zhongpu Zhang, Jianguang Fang, Chi Wu, Boyang Wan, Michael Swain, Qing Li

Summary: Despite advances in bone scaffold design optimization, their functionality remains suboptimal due to uncertainties caused by the manufacturing process. A novel multi-objective robust optimization approach is proposed to minimize the effects of uncertainties on the optimized design. This study presents the first non-deterministic optimization of tissue scaffold, shedding light on the significant topic of scaffold design and additive manufacturing.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2023)

Article Computer Science, Interdisciplinary Applications

A 172-line Matlab code for structural topology optimization in the body-fitted mesh

Zicheng Zhuang, Yi Min Xie, Qing Li, Shiwei Zhou

Summary: This article presents the implementation of topology optimization in unstructured triangular mesh using the TriTOP172 Matlab code. The code eliminates zig-zag boundaries commonly found in rectangular mesh and includes functions for setup, optimization iterations, body-fitted mesh generation, boundary smoothing, and finite element analysis. Numerical examples are provided to demonstrate the algorithm's effectiveness. The code can be extended for complex conceptual design problems in various engineering fields. The educational program is available in the Appendix.

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2023)

Review Engineering, Civil

On safety design of vehicle for protection of vulnerable road users: A review

Xiaojiang Lv, Zhi Xiao, Jianguang Fang, Qing Li, Fei Lei, Guangyong Sun

Summary: This paper provides a comprehensive review on the state-of-the-art assessments and design of frontal structures for protecting vulnerable road users (VRU). It evaluates impact-induced injury mechanisms of different body parts, compares safety regulations and assessment procedures for VRU protection, outlines experimental testing platforms for different VRU impacts, introduces virtual test systems, discusses various front-end structure designs for reducing VRU injuries, and reviews design optimization techniques and other protective measures for VRU.

THIN-WALLED STRUCTURES (2023)

Article Engineering, Biomedical

A Novel Computational Biomechanics Framework to Model Vascular Mechanopropagation in Deep Bone Marrow

Yunduo Charles Zhao, Yingqi Zhang, Fengtao Jiang, Chi Wu, Boyang Wan, Ruhma Syeda, Qing Li, Bo Shen, Lining Arnold Ju

Summary: Mechanical stimuli generated by body exercise can be transmitted from cortical bone into the deep bone marrow. A mechanosensitive perivascular stem cell niche has been identified within the bone marrow for osteogenesis and lymphopoiesis. However, the mechanopropagation from compact bone to deep bone marrow vasculature remains unclear. In this study, an integrated computational biomechanics framework was devised to quantitatively evaluate the effects of exercise-induced mechanical stretching on bone marrow vasculature.

ADVANCED HEALTHCARE MATERIALS (2023)

Review Engineering, Mechanical

Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption

Yaozhong Wu, Jianguang Fang, Chi Wu, Cunyi Li, Guangyong Sun, Qing Li

Summary: Lightweight materials and structures have been extensively studied for design and manufacturing of more sustainable products with reduced materials and energy consumption, while maintaining proper mechanical and energy absorption characteristics. Additive manufacturing techniques have offered more freedom for designing novel lightweight materials and structures, but the rational design for desired mechanical properties remains challenging. This review comprehensively discusses the recent advances in additively manufactured materials and structures, focusing on their mechanical properties and energy absorption applications. It also addresses challenges, future directions, and optimization techniques in this field.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (2023)

Article Ergonomics

Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment

Yitao Ma, Qiang Liu, Jie Fu, Kangmin Liufu, Qing Li

Summary: In a mixed traffic environment, connected vehicle platoons face a high risk of collision in lane change scenarios due to the lack of communication and collaboration with surrounding non-connected vehicles. Therefore, a collision-avoidance lane change control method is proposed for a connected bus platoon to safely elude non-connected vehicles. This method utilizes a sensor system with multiple sensors in longitudinal and lateral directions and a platoon controller based on vehicle-to-vehicle (V2V) communication. Experimental results show that the proposed method significantly improves the safety of platoon vehicles in mixed traffic scenarios.

ACCIDENT ANALYSIS AND PREVENTION (2023)

Article Mechanics

Experimental and numerical investigation into tensile and cross tensile responses of CFRP/Al blind riveted-bonded hybrid joints

Yu Lu, Qiang Liu, Zengbo Zhang, Liuye Qin, Qing Li

Summary: This study aimed to investigate the responses of riveted-bonded hybrid joints connecting CFRP and Al under tensile and cross tensile loads. Different locking modes were fabricated and analyzed. The mechanical properties and failure mechanisms were studied and compared. Numerical models were established to replicate the failure behaviors and identify damaged areas.

COMPOSITE STRUCTURES (2023)

Article Engineering, Multidisciplinary

AK-HRn: An efficient adaptive Kriging-based n-hypersphere rings method for structural reliability analysis

Dapeng Wang, Dequan Zhang, Yuan Meng, Meide Yang, Chuizhou Meng, Xu Han, Qing Li

Summary: With the increasing complexity of engineering problems, traditional reliability analysis methods face challenges in terms of computational efficiency and accuracy. The Kriging model, a surrogate model, has been widely used in reliability analysis due to its advantages in computational efficiency and numerical accuracy. However, there are still significant issues with the Kriging model-assisted reliability analysis, such as the need for a large candidate sample pool and excessive local prediction accuracy. To address these issues, a new method called AK-HRn, which combines adaptive Kriging and n-hypersphere rings, is proposed in this study. The AK-HRn method demonstrates high efficiency and robustness in solving complex reliability analysis problems.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Mechanical

Phase field fracture model for additively manufactured metallic materials

Cunyi Li, Jianguang Fang, Yuheng Wan, Na Qiu, Grant Steven, Qing Li

Summary: This study aims to develop a phase field framework for simulating the complex mechanical behaviors of laser powder bed fusion printed metallic materials. By considering the microstructural orientation induced by laser powder bed fusion, transversely isotropic Hill48 and modified Mohr-Coulomb constitutive models are incorporated to describe plasticity and fracture behaviors respectively. The proposed phase field model is able to better reproduce force-displacement responses of all specimens by considering the stress state-dependent crack initiation. Moreover, applying a transversely isotropic fracture model is necessary to accurately predict the crack path and global force-displacement responses.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (2023)

Review Engineering, Civil

On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects

Ruyang Yao, Tong Pang, Bei Zhang, Jianguang Fang, Qing Li, Guangyong Sun

Summary: This article provides a comprehensive overview of recent advances in the development of thin-walled multi-cell structures and materials (TWMCSM) for crashworthiness and protection applications in various vehicles. It covers the classification of TWMCSM, commonly-used manufacturing methods, energy absorption mechanism and characteristics, experimental testing and numerical modeling techniques, key parameters affecting crashworthiness, analytical modeling methods, design optimization procedures, typical applications and future research directions. It aims to provide informative references and a comprehensive landscape for researchers and engineers in designing new TWMCSM for better energy absorption and crashworthiness.

THIN-WALLED STRUCTURES (2023)

Article Dentistry, Oral Surgery & Medicine

Effect of implant placement depth on bone remodeling on implant-supported single zirconia abutment crown: A 3D finite element study

Pongsakorn Poovarodom, Chaiy Rungsiyakull, Jarupol Suriyawanakul, Qing Li, Keiichi Sasaki, Nobuhiro Yoda, Pimduen Rungsiyakull

Summary: This study aimed to evaluate the influence of subcrestal implant placement depth on bone remodeling using time-dependent finite element analysis (FEA) with a bone-remodeling algorithm. The study found that deeper implant placement can increase bone density, but it also increases the maximum von Mises stress and overloading elements.

JOURNAL OF PROSTHODONTIC RESEARCH (2023)

Article Materials Science, Multidisciplinary

F-doped Co3O4 with Pt-like activity and excellent stability for hydrogen evolution reaction in alkaline media

Deyong Zheng, Huihui Jin, Yucong Liao, Pengxia Ji

Summary: In this study, a highly stable and efficient catalyst, fluorine-doped Co3O4 (F-Co3O4), was developed for hydrogen production by water electrolysis. The F-Co3O4 catalyst exhibited a remarkable reduction in overpotential and demonstrated excellent stability for over 100 hours.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of the addition of Cu6Sn5 nanoparticles on the growth of intermetallic compounds at the interfaces of Sn3.0Ag0.5Cu solder joints

Ziwen Lv, Jintao Wang, Fengyi Wang, Jianqiang Wang, Fuquan Li, Hongtao Chen

Summary: Adding Cu6Sn5 nano particles can effectively inhibit the overgrowth of intermetallic compounds at the interfaces of solder joints in electronic devices, providing a solution to this issue. A new growth mechanism of intermetallic compounds at the interfaces was identified.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

BiOI/AgI/Ag plasmonic heterostructure for efficient photoelectrochemical water splitting

Jun Wang, Jiawei Chen, Wanru Liao, Fangyang Liu, Min Liu, Liangxing Jiang

Summary: A BiOI/AgI/Ag plasmonic heterostructure photocathode was successfully designed through electrodeposition, ion-exchange, and illumination methods. This photocathode exhibits superior performance in photoelectrochemical water splitting.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Ni@O-doped carbon Mott-Schottky heterojunctions to enhance sulfur conversion kinetics

Xiaoxiao Liu, Xianxian Zhou, Xiaotao Ma, Qinbo Yuan, Shibin Liu

Summary: In this study, the authors propose a method to accelerate the reaction of polysulfides in lithium-sulfur batteries using a Ni@OC Mott-Schottky heterojunction as a catalyst. The experimental results demonstrate that the charge redistribution at the Ni@OC interface accelerates electron transfer and enhances catalytic activity, leading to improved reaction kinetics and battery performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of fixture boundary conditions for low-velocity impact: A focus on composites with different matrix and fibers

Dayou Ma, Mohammad Rezasefat, Joziel Aparecido da Cruz, Sandro Campos Amico, Marco Giglio, Andrea Manes

Summary: The matrix has a significant effect on the impact resistance of composite materials. Replacing a brittle polymer with a more flexible one can improve impact resistance, but it poses challenges to standard testing methods. This study designs a new fixture for testing the low-velocity impact of soft composites and investigates the effect of the fixture on the mechanical performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Synergistic effect of defects and heterostructures endowing bronze titanium dioxide with superior lithium storage performances

Lingchang Wang, Qihang Yang, Huzhen Li, Ming Wei, Qian Wang, Zhenzhong Hu, Mengmeng Zhen

Summary: Bronze titanium dioxide (TiO2(B)) is a promising anode material for lithium-ion batteries due to its high specific capacity. However, its practical applications are hindered by poor conductivity and limited electrochemical kinetics. In this study, TiO2(B)-carbon nanosheets heterostructures are synthesized to enhance the cycling performance and rate capability of TiO2(B).

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Sustained electromagnetic parameters of barium ferrite and epoxy nanocomposites for patch antenna miniaturization over GHz frequency range

Atul Thakur, Ritesh Verma, Ankush Chauhan, Fayu Wan, Preeti Thakur

Summary: In this study, BaFe12O19 and BaFe12O19: Epoxy (50:50) nanocomposites were synthesized using the co-precipitation method. The structural information and material properties, such as crystallite size and electrical conductivity, were characterized by XRD, FESEM, EDX, and TEM techniques.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

In-situ construction of CoS2@NC hierarchical binder-free cathode for advanced Li-CO2 batteries

Jingyu Wu, Xinyan Ma, Yong Yang

Summary: A well-defined CoS2@NC(CS-500) hierarchical binder-free catalyst cathode is constructed through in-situ grown of ZIF-67 on carbon cloth and high-temperature carbonization. The cathode shows excellent reaction kinetics and electrochemical performance, providing inspiration for developing advanced Li-CO2 battery catalysts.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

K5Eu1-xHox(MoO4)4: Structures and luminescence properties

Svetlana M. Posokhova, Vladimir A. Morozov, Kirill N. Boldyrev, Dina Deyneko, Erzhena T. Pavlova, Bogdan I. Lazoryak

Summary: This study explores the impact of synthesis method and composition on the structure and luminescence properties of K5Eu1-xHox(MoO4)4 with the palmierite-type matrix. The co-doping of Eu3+ and Ho3+ ions plays a critical role in manipulating charge transfer and luminescence efficiency in the visible and infrared regions.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Benzonitrile/pyridylbenzoimidazole hybrid electron-transport material for efficient phosphorescence and TADF OLEDs

Jian Wang, Yeting Tao, Jingsheng Wang, Youtian Tao

Summary: A new electron-transport material iTPyBI-CN is developed through non-catalytic C-N coupling reaction. It exhibits better electroluminescence efficiency in organic light-emitting diodes compared to the commercial material TPBI, due to its twisted geometry and higher energy levels.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Microscopic characteristics and thermodynamic property changes in limestone under high-temperature treatment

Tao Zhu, Feng Huang, Shuo Li, Yang Zhou

Summary: This article combines XRD analysis and microscopic structural observation to investigate the changes in limestone after high-temperature treatment. It finds that 500 degrees C is the critical temperature for crystalline and spatial arrangement changes in limestone, and the thermal conductivity, specific heat capacity, and heat storage coefficient gradually decrease after thermal treatment.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Novel synthesis of ZnO nanostructure from galvanization waste for antibacterial application

Muhammad Haekal Habibie, Fransiska Sri Herwahyu Krismastuti, Abdi Wira Septama, Faiza Maryani, Vivi Fauzia

Summary: This study focuses on the synthesis of zinc oxide nanostructure from zinc recovered from galvanization ash and highlights its potential as a sustainable source of zinc and as an antibacterial agent.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Biomimetic mineralization engineered phycocyanin with improved stability and antioxidantive activity under environmental stress

Jingyi Li, Yixin Xing, Wei Gu, Shousi Lu

Summary: In this study, PC@CaP microparticles were fabricated using biomimetic mineralization. The results showed that under environmental stress, PC@CaP exhibited improved stability and antioxidative activity, indicating its potential use in high-added value fields.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

ZIF-8 nanoparticles combined with fibroin protein co-modified TiO2 nanotube arrays to construct a drug sustained-release platform

Yan Liu, Shunyou Chen

Summary: In this study, TNTs were used as a drug carrier and modified with ZIF-8 and silk fibroin to obtain a new drug loading platform. The results showed that this drug-loaded platform had a good drug release effect in vitro and could promote cell proliferation and osteogenic differentiation.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Observation of stacking faults in ε-phase InSe crystal

Chunhui Zhu, Wentao Wang, Qing Zhen, Xinning Huang, Shixin Li, Shaochang Wang, Xiaoping Ma, Xiaoxia Liu, Yalong Jiao, Kai Sun, Zhuangzhi Li, Huaixin Yang, Jianqi Li

Summary: A type of stacking fault is revealed in e-InSe crystal, which is associated with a small stacking-fault energy and shows exceptional plasticity.

MATERIALS LETTERS (2024)