4.7 Article

Anionic Synthesis and Rheological Characterization of Poly(p-methylstyrene) Model Comb Architectures with a Defined and Very Low Degree of Long Chain Branching

期刊

MACROMOLECULAR RAPID COMMUNICATIONS
卷 31, 期 24, 页码 2140-2145

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/marc.201000412

关键词

anionic polymerization; branched; combs; rheology; structure-property relations

资金

  1. Land Baden-Wuerttemberg
  2. Technical University of Darmstadt
  3. German Research Foundation

向作者/读者索取更多资源

A method is presented for the synthesis of defined sparsely branched polystyrene-based homopolymer model combs. By the use of poly(p-methylstyrene) (PpMS) as backbone and side chains, a low, but well controlled amount of branching of typically less than 1 mol-% (e.g., 1 branch per approx. 200 backbone C-atoms) can be achieved. The used anionic synthesis offers full control of the molecular weight in combination with low polydispersity. Molecular weight and polydispersity were determined by SEC-MALLS, confirming the well defined synthesis with low polydispersity ((M) over bar (w)/(M) over bar (n) < 1.07). The melt rheological properties of the synthesized linear and comb polymers were obtained in both oscillatory shear and uniaxial extensional flow. Using the so-called van Gurp-Palmen plot, clear differences between both synthesized topologies are clearly seen. The appearance of a second minimum for lower values of the complex modulus in shear is a clear indication of a second relaxation process attributable to the entangled side chains. The presence of the entangled side chains is responsible for the observed strain hardening obtained in extensional viscosity experiments, as compared to the linear polymers. These model samples open up the possibility to compare different advanced rheological methods, e.g., FT-rheology or extensional rheology, towards limiting sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据