4.6 Article

Early-Stage Dynamics in Coupled Proton-Electron Transfer from the π-π* State of Phenol to Solvent Ammonia Clusters: A Nonadiabatic Electron Dynamics Study

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 116, 期 46, 页码 11167-11179

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp304781m

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Global COE Program for Chemistry Innovation through Cooperation of Science and Engineering in the University of Tokyo
  3. Grants-in-Aid for Scientific Research [23245002] Funding Source: KAKEN

向作者/读者索取更多资源

We reexmine the mechanism and interpretation of photochemical reaction of phenol molecule with small ammonia clusters, which is schematically written as Ph*OH center dot center dot center dot(NH3)(n) -> PhO center dot center dot center dot center dot[H(NH3)(n)]*(center dot) with n <= 5. The low-lying excited states of this system in the adiabatic representation are densely quasi-degenerate. due to the presence of the Rydberg-like diffused states in ammonia clusters. To treat the dynamics on such highly quasi degenerate electronic states, we have carried out a large scale: semiclassical Ehrenfest dynamics, nTonadiabatic electron wavepacket dynamics in terms of very many configuration state functions, to track the nonadiabatic electron and proton transfer dynamics in the time step of attosecond scale, integrating up to 300 fs. It turns out that the mechanism is more complicated than that referred to as excited state hydrogen-atom transfer,which is widely accepted now. The pathways of jumping electron and shifting proton nucleus are identified to be mutually different, which necessarily results in charge separation in ammonia clusters after the transitions. The global feature of the present transfer dynamics is fully analyzed as one of the general prototypes of coupled electron-proton transfer in excited states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据