4.6 Article

Probing the Dynamics of Intraband Electronic Coherences in Cylindrical Molecular Aggregates

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 113, 期 24, 页码 6587-6598

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp811064z

关键词

-

向作者/读者索取更多资源

Electronic coherence transfer has been detected in only a small number of systems despite the potential impact of these dynamics on natural and artificial light harvesting. Nonlinear spectroscopies designed to probe the dynamics of electronic coherences are challenged by signal emission associated with electronic populations. This paper presents a newly developed nonlinear laser spectroscopy capable of measuring intraband electronic coherences (i.e., for pairs of single exciton states) in molecular aggregates with full suppression of undesired signal components. In comparison with methods applying all-femtosecond laser pulses, the present experiment. uses both narrowband and broadband pulses to obtain similar information with a greater than 360-fold faster data acquisition rate. In addition, the technique enhances spectral resolution with experimental control of the measured line widths. High instrument throughput facilitates the comparison. of measurements for a wide variety of materials. As the first application of this technique, we investigate the dynamics of intraband electronic coherences in double-walled cylindrical molecular aggregates possessing five slightly different morphologies controlled by varying the solvent conditions. Interfering coherences associated with pairs of exciton states give rise to well-resolved quantum beats in the measured signal fields. In addition, coherence transfer processes are investigated using a superposition of tensor elements (i.e., an analogue of probing population transfer with pump-probe anisotropy). The comparison of experimental measurements and calculations based on a theoretical model supports the finding of coherence transfer processes terminating in an electronic coherence between the inner and outer cylinder excitons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据