4.5 Article

Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment

期刊

JOURNAL OF NEUROCHEMISTRY
卷 108, 期 5, 页码 1309-1321

出版社

WILEY
DOI: 10.1111/j.1471-4159.2009.05877.x

关键词

cell death; hypoxia; hypoxia inducible factor-1; ischemia; pentose phosphate pathway; redox status

资金

  1. NIH [P20 RR15636, R01NS058807]

向作者/读者索取更多资源

Hypoxia inducible factor 1 (HIF-1) has been suggested to play a critical role in the fate of cells exposed to hypoxic stress. However, the mechanism of HIF-1-regulated cell survival is still not fully understood in ischemic conditions. Redox status is critical for decisions of cell survival, death and differentiation. We investigated the effects of inhibiting HIF-1 on cellular redox status in SH-SY5Y cells exposed to hypoxia or oxygen and glucose deprivation (OGD), coupled with cell death analyses. Our results demonstrated that inhibiting HIF-1 alpha expression by HIF-1 alpha specific small interfering RNA (siRNA) transfection increased reactive oxygen species generation, and transformed the cells to more oxidizing environments (low GSH/GSSG ratio, low NADPH level) under either hypoxic or OGD exposure. Cell death increased dramatically in the siRNA transfected cells, compared to non-transfected cells after hypoxic/OGD exposures. In contrast, increasing HIF-1 alpha expression by desferrioxamine, a metal chelator and hydroxylase inhibitor, induced a more reducing environment (high GSH/GSSG ratio, high NADPH level) and reduced cell death. Further studies showed that HIF-1 regulated not only glucose transporter-1 expression, but also the key enzymes of the pentose phosphate pathway such as glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. These enzymes are important in maintaining cellular redox homeostasis by generating NADPH, the primary reducing agent in cells. Moreover, catalase significantly decreased cell death in the siRNA-transfected cells induced by hypoxia and OGD. These results suggest that maintenance of cellular redox status by HIF-1 protects cells from hypoxia and ischemia mediated injuries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Associations between liver function and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in non-demented adults: The CABLE study

Pei-Yang Gao, Ya-Nan Ou, Yi-Ming Huang, Zhi-Bo Wang, Yan Fu, Ya-Hui Ma, Qiong-Yao Li, Li-Yun Ma, Rui-Ping Cui, Yin-Chu Mi, Lan Tan, Jin-Tai Yu

Summary: Liver function may play a role in the progression of Alzheimer's disease. The study found that as AD progressed, certain liver function markers increased while others decreased. The relationship between liver function and CSF AD biomarkers indicates a potential mediation effect on cognition.

JOURNAL OF NEUROCHEMISTRY (2024)