4.7 Article

Predicting the depth of penetration and weld bead width from the infra red thermal image of the weld pool using artificial neural network modeling

期刊

JOURNAL OF INTELLIGENT MANUFACTURING
卷 23, 期 5, 页码 1995-2001

出版社

SPRINGER
DOI: 10.1007/s10845-011-0526-4

关键词

Artificial neural network; Infra red thermal images; Image processing; Depth of penetration; Weld bead width; A-TIG welding

向作者/读者索取更多资源

It is necessary to estimate the weld bead width and depth of penetration using suitable sensors during welding to monitor weld quality. Among the vision sensors, infra red sensing is the natural choice for monitoring welding processes as welding is inherently a thermal processing method. An attempt has been made to estimate the weld bead width and depth of penetration from the infra red thermal image of the weld pool using artificial neural network models during A-TIG welding of 3 mm thick type 316 LN stainless steel plates. Real time infra red images were captured using IR camera for the entire weld length during A-TIG welding at various current values. The image features such as length and width of the hot spot, peak temperature, and other features using line scan analysis are extracted using image processing techniques corresponding to particular locations of the weld joint. These parameters along with their respective current values are used as inputs while the measured weld bead width and depth of penetration are used as output of the neural network models. Accurate ANN models predicting weld bead width (9-11-1) and depth of penetration (9-9-1) have been developed. The correlation coefficient values obtained were 0.98862 and 0.99184 between the measured and predicted values of weld bead width and depth of penetration respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据