4.6 Article

Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss

期刊

NEW PHYTOLOGIST
卷 209, 期 3, 页码 1014-1027

出版社

WILEY
DOI: 10.1111/nph.13656

关键词

Arabidopsis thaliana; arginyl-tRNA protein transferase (ATE); development; N-end rule degradation (NERD); N-end rule pathway; Physcomitrella patens; post-translational protein modification; starch accumulation

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [IG9/8-1]
  2. European Union (European Regional Development Fund) in the framework of the program INTERREG IV Upper Rhine
  3. Excellence Initiative of the German Federal Government [EXC 294 BIOSS]
  4. Excellence Initiative of the German State Government [EXC 294 BIOSS]

向作者/读者索取更多资源

The importance of the arginyl-tRNA protein transferase (ATE), the enzyme mediating post-translation arginylation of proteins in the N-end rule degradation (NERD) pathway of protein stability, was analysed in Physcomitrella patens and compared to its known functions in other eukaryotes. We characterize ATE: GUS reporter lines as well as ATE mutants in P. patens to study the impact and function of arginylation on moss development and physiology. ATE protein abundance is spatially and temporally regulated in P. patens by hormones and light and is highly abundant in meristematic cells. Further, the amount of ATE transcript is regulated during abscisic acid signalling and downstream of auxin signalling. Loss-of-function mutants exhibit defects at various levels, most severely in developing gametophores, in chloroplast starch accumulation and senescence. Thus, arginylation is necessary for moss gametophyte development, in contrast to the situation in flowering plants. Our analysis further substantiates the conservation of the N-end rule pathway components in land plants and highlights lineage-specific features. We introduce moss as a model system to characterize the role of the NERD pathway as an additional layer of complexity in eukaryotic development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据