4.5 Article

GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffe, HPLC and enzymatic assays

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jchromb.2010.04.025

关键词

Creatine; Creatinine; Method comparison; Quality control; Quantification; Validation

向作者/读者索取更多资源

In consideration of its relatively constant urinary excretion rate, creatinine in urine is a useful biochemical parameter to correct the urinary excretion rate of endogenous and exogenous biomolecules. Assays based on the reaction of creatinine and picric acid first reported by Jaffe in 1886 still belong to the most frequently used laboratory approaches for creatinine measurement in urine. Further analytical methods for creatinine include HPLC-UV, GC-MS, and LC-MS and LC-MS/MS approaches. In the present article we report on the development, validation and biomedical application of a new GC-MS method for the reliable quantitative determination of creatinine in human urine, plasma and serum. This method is based on thederivatization of creatinine (d(0)-Crea) and the internal standard [methyl-trideutero]creatinine (d(3)-Crea) with pentafluorobenzyl (PFB) bromide in the biological sample directly or after dilution with phosphate buffered saline, extraction of the reaction products with toluene and quantification in 1-mu l aliquots of the toluene extract by selected-ion monitoring of m/z 112 for d(0)-Crea-PFB and m/z 115 for d(3)-Crea-PFB in the electron-capture negative-ion chemical ionization mode. The limit of detection of the method is 100 amol of creatinine. In an inter-laboratory study on urine samples from 100 healthy subjects, the GC-MS method was used to test the reliability of currently used Jaffe, enzymatic and HPLC assays in clinical and occupational studies. The results of the inter-laboratory study indicate that all three tested methods allow for satisfactory quantification of creatinine in human urine. The GC-MS method is suitable for use as a reference method for urinary creatinine in humans. In serum, creatine was found to contribute to creatinine up to 20% when measured by the present GC-MS method. The application of the GC-MS method can be extended to other biological samples such as saliva. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据