4.5 Review

Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods

期刊

出版社

WILEY
DOI: 10.1002/jctb.2300

关键词

bacterial cellulose; nanofibres; modified bioreactors; airlift bioreactor; rotary-film bioreactor; feedstock; genetic modification

向作者/读者索取更多资源

This review summarizes previous work that was done to improve the production of bacterial cellulose nanofibres. Production of biocellulose nanofibres is a subject of interest owing to the wide range of unique properties that makes this product an attractive material for many applications. Bacterial cellulose is a natural nanomaterial that has a native dimension of less than 50 nm in diameter. It is produced in the form of nanofibres, yielding a very pure cellulose product with unique physical properties that distinguish it from plant-derived cellulose. Its high surface-to-volume ratio combined with its unique properties such as poly-functionality, hydrophilicity and biocompatibility makes it a potential material for applications in the biomedical field. The purpose of this review is to summarize the methods that might help in delivering microbial cellulose to the market at a competitive cost. Different feedstocks in addition to different bioreactor systems that have been previously used are reviewed. The main challenge that exists is the low yield of the cellulosic nanofibres, which can be produced in static and agitated cultures. The static culture method has been used for many years. However, the production cost of this nanomaterial in bioreactor systems is less expensive than the static culture method. Biosynthesis in bioreactors will also be less labour intensive when scaled up. This would improve developing intermediate fermentation scale-up so that the conversion to an efficient large-scale fermentation technology will be an easy task. (c) 2009 Society of Chemical Industry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据