4.6 Article

Temperature and doping dependencies of electrical properties in Al-doped 4H-SiC epitaxial layers

期刊

JOURNAL OF APPLIED PHYSICS
卷 106, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3158565

关键词

chemical vapour deposition; Hall mobility; hole density; impurity scattering; impurity states; phonons; semiconductor doping; semiconductor epitaxial layers; silicon compounds; wide band gap semiconductors

向作者/读者索取更多资源

The free hole concentration and the low-field transport properties of Al-doped 4H-SiC epilayers with several acceptor concentrations grown on semi-insulating substrates have been investigated in the temperature range from 100 to 500 K by Hall-effect measurements. Samples have been grown by cold-wall chemical vapor deposition (CVD) in the Al acceptor concentration range from 3x10(15) to 5.5x10(19) cm(-3). The dependencies of the acceptor ionization ratio at 300 K and the ionization energy on the acceptor concentration were estimated. Numerical calculations of the hole Hall mobility and the Hall scattering factor have been performed based on the low-field transport model using relaxation-time approximation. At the low acceptor concentrations, the acoustic phonon scattering dominates the hole mobility at 300 K. At the high acceptor concentrations, on the other hand, the neutral impurity scattering dominates the mobility. A Caughey-Thomas mobility model with temperature dependent parameters is used to describe the dependence of the hole mobilities on the acceptor concentration, and the physical meanings of the parameters are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据