4.6 Article

Why the long-term charge offset drift in Si single-electron tunneling transistors is much smaller (better) than in metal-based ones: Two-level fluctuator stability

期刊

JOURNAL OF APPLIED PHYSICS
卷 104, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2949700

关键词

-

资金

  1. NIST Office of Microelectronics Programs

向作者/读者索取更多资源

A common observation in metal-based (specifically, those with AlOx tunnel junctions) single-electron tunneling (SET) devices is a time-dependent instability known as the long-term charge offset drift. This drift is not seen in Si-based devices. Our aim is to understand the difference between these, and ultimately to overcome the drift in the metal-based devices. A comprehensive set of measurements shows that (1) brief measurements over short periods of time can mask the underlying drift, (2) we have not found any reproducible technique to eliminate the drift, and (3) two-level fluctuators (TLFs) in the metal-based devices are not stable. In contrast, in the Si-based devices the charge offset drifts by less than 0.01e over many days, and the TLFs are stable. We also show charge noise measurements in a SET device over four decades of temperature. We present a model for the charge offset drift based on the observation of nonequilibrium heat evolution in glassy materials, and obtain a numerical estimate in good agreement with our charge offset drift observations. We conclude that, while the Si devices are not perfect and defect-free, the defects are stable and noninteracting; in contrast, the interacting, unstable glasslike defects in the metal-based devices are what lead to the charge offset drift. We end by suggesting some particular directions for the improvement in fabrication, and in particular, fabrication with crystalline metal-oxide barriers, that may lead to charge offset drift-free behavior. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据