4.1 Article

YAW MOMENT COMPENSATION FOR BIPEDAL ROBOTS VIA INTRINSIC ANGULAR MOMENTUM CONSTRAINT

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219843612500338

关键词

Humanoid; bipedal locomotion; yaw moment; angular momentum

类别

资金

  1. European Commission [ICT-2009-4]

向作者/读者索取更多资源

This paper is aimed at describing a technique to compensate undesired yaw moment, which is inevitably induced about the support foot during single support phases while a bipedal robot is in motion. The main strategy in this method is to rotate the upper body in a way to exert a secondary moment that counteracts to the factors which create the undesired moment. In order to compute the yaw moment by considering all the factors, we utilized Eulerian ZMP Resolution, as it is capable of characterizing the robot's rotational inertia, a crucial component of its dynamics. In doing so, intrinsic angular momentum rate changes are smoothly included in yaw moment equations. Applying the proposed technique, we conducted several bipedal walking experiments using the actual bipedal robot CoMan. As the result, we obtained 61% decrease in undesired yaw moment and 82% regulation in yaw-axis deviation, which satisfactorily verify the efficiency of the proposed approach, in comparison to off-the-shelf techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据