4.6 Article

Transition from interfacial to diffusional growth during hydrogenation of Mg

期刊

MATERIALS LETTERS
卷 161, 期 -, 页码 271-274

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matlet.2015.08.116

关键词

Interfacial; Diffusional; Growth; Hydrogenation; Kinetics; MgH2

资金

  1. National Science Foundation, United States [DMR-0605406]
  2. Science and Engineering Research Board, Department of Science and Technology, India [SB/FTP/ETA-0044/2014]

向作者/读者索取更多资源

The transition from interfacial to diffusional growth during hydrogenation of Mg -> MgH2 (hydride) at 210 degrees C for 300 min is studied using Johnson-Mehl-Avrami-Kolmogorov equation (alpha = 1 - exp(- kt(n))). The growth dimensionality (n) decreases from 0.73 to 0.23. 1D (hydride/metal) interfacial growth occurs when n > 0.50, suggested by constant interface velocity (U). Diffusional growth at n <0.50 is confirmed by the core-shell (Mg-MgH2) structure, drop in U by similar to 2-orders and the diffusion coefficient (D) of H-atom through hydride. The transition from 1D interfacial to diffusional growth occurs at n approximate to 0.50. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Mechanics

Wave dispersion characteristics of a rectangular sandwich composite plate with tunable magneto-rheological fluid core rested on a visco-Pasternak foundation

Farzad Ebrahimi, Sepehr Bayrami Sedighi

Summary: In this paper, a sandwich composite plate with a tunable magneto-rheological (MR) fluid core was used to analyze wave propagation. The effects of magnetic field and core-to-top layer thickness ratio on the wave dispersion characteristics were investigated. The results showed that the magnetic field intensity was the most important factor in changing the wave dispersion characteristics, and increasing the core-to-top layer thickness ratio led to a decrease in wave frequency.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Mechanics

Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory

Reza Asrari, Farzad Ebrahimi, Mohammad Mahdi Kheirikhah, Keivan Hosseini Safari

Summary: This article investigates the buckling characteristics of a functionally graded magneto-electro-thermo-elastic nanoshell based on the nonlocal strain gradient theory. The nanoshell is subjected to external fields, and the governing equations are derived and solved using Galerkin's approach, exploring the dependence of buckling behavior on various factors.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Mechanics

Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

Ali Shokrgozar, Aria Ghabussi, Farzad Ebrahimi, Mostafa Habibi, Hamed Safarpour

Summary: In this study, the stability of a cylindrical microshell reinforced by graphene nanoplatelets under axial load is investigated, taking into account the viscoelastic foundation and nonlocal strain gradient theory. The research considers the effects of various boundary conditions and explores the impact of viscoelasticity, strain-stress size-dependent parameters, and other factors on the stability of the microshell. The results provide valuable insights for the design and fabrication of microactuators and microsensors.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Computer Science, Interdisciplinary Applications

Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate

Ali Dabbagh, Abbas Rastgoo, Farzad Ebrahimi

Summary: This paper analyzes the post-buckling behaviors of multi-scale hybrid nanocomposite beam-type structures manufactured from carbon fibers and carbon nanotubes, considering the influences of agglomeration phenomenon and initial deflection. Nonlinear governing equations are derived based on the combination of the virtual work's principle, von Karman hypothesis, and Euler-Bernoulli beam theory, solved analytically using Galerkin's method under different boundary conditions to show the significant impact of tailoring agglomeration parameters on stability response.

ENGINEERING WITH COMPUTERS (2022)

Article Mechanics

On the nonlinear dynamics of viscoelastic graphene sheets conveying nanoflow: Parametric excitation analysis

Ali Shariati, Farzad Ebrahimi, S. Hamed S. Hosseini, Ali Toghroli, S. Sedighi Bayrami

Summary: This article investigates the effect of nanoflow on the nonlinear dynamic instability of graphene sheets under parametric excitation. By combining nonlocal elasticity and nonlinear von Karman theories, the governing equation of motion is derived, and a nonlinear Mathieu-Hill equation is established to determine the bifurcations and regions of dynamic instability. The main conclusion is that nanoflow directly influences the amplitude response of the system. This study provides valuable information for future research in the field of nano electromechanical systems.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Computer Science, Interdisciplinary Applications

Vibration analysis of polymer composite plates reinforced with graphene platelets resting on two-parameter viscoelastic foundation

Saeedeh Qaderi, Farzad Ebrahimi

Summary: In this paper, the vibration behavior of a composite plate reinforced with graphene platelets on a viscoelastic foundation in a thermal environment is examined using a higher-order shear deformation theory. The material properties of the composite plate reinforced with graphene platelets are determined using the Halpin-Tsai model. The Euler-Lagrange equations of the composite plate are obtained using Hamilton's principle and Navier's method is used to analyze and solve the problem. The effects of various parameters on the vibrational reaction of the structure, such as geometry, graphene platelet weight fraction, temperature changes, and viscoelastic foundation, are analyzed.

ENGINEERING WITH COMPUTERS (2022)

Article Computer Science, Interdisciplinary Applications

Studying propagation of wave in metal foam cylindrical shells with graded porosities resting on variable elastic substrate

Farzad Ebrahimi, Ali Seyfi

Summary: This investigation analyzes the wave propagation of porous metal foam cylindrical shells and presents the variations of wave frequency and phase velocity under different parameters.

ENGINEERING WITH COMPUTERS (2022)

Article Computer Science, Interdisciplinary Applications

On buckling characteristics of polymer composite plates reinforced with graphene platelets

Ali Shariati, Saeedeh Qaderi, Farzad Ebrahimi, Ali Toghroli

Summary: In this study, the buckling analysis of polymer composite plates reinforced with graphene platelets (GPLs) in a thermal environment is investigated using the higher-order shear deformation plate theory. The material properties of the multilayer polymer composite plate are determined using the Halpin-Tsai model. Four different patterns of GPL distribution in the composite plate are considered. The Euler-Lagrange equations of the composite plate are obtained using Hamilton's principle and Navier's method is used to analyze and solve the problem. The results of this study are verified by comparison with previous works, and the effects of various parameters such as geometry, GPL weight fraction, and temperature changes on the critical buckling temperature are explored.

ENGINEERING WITH COMPUTERS (2022)

Article Mechanics

Wave propagation analysis of electro-rheological fluid-filled sandwich composite beam

Ali Shariati, S. Sedighi Bayrami, Farzad Ebrahimi, Ali Toghroli

Summary: This article investigates the wave propagation of a sandwich composite beam with a tunable electro-rheological (ER) fluid core. The governing equations of motion are derived using Hamilton's principle, and an analytical solution is utilized to obtain the wave frequency and phase velocity through solving an eigenvalue problem. Additionally, the effects of different parameters, such as electric field, core-to-top layer thickness ratio, and ER core thickness, on the wave dispersion characteristics are investigated.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2022)

Article Physics, Multidisciplinary

Wave dispersion characteristics of thermally excited graphene oxide powder-reinforced nanocomposite plates

Farzad Ebrahimi, Mostafa Nouraei, Ali Seyfi

Summary: An analytical approach was developed to investigate wave propagation in GOP reinforced nanocomposite plates under thermal loading. The study derived governing differential equations and solved them analytically to obtain wave frequency and phase velocity. The influences of various parameters on wave propagation behavior were also covered.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Physics, Multidisciplinary

Wave propagation analysis of smart inhomogeneous piezoelectric nanosize beams rested on an elastic medium

Farzad Ebrahimi, Ali Seyfi

Summary: This paper mainly focuses on analyzing the wave propagation of sigmoid functionally graded (SFG) piezoelectric nanobeams on an elastic foundation using the nonlocal elasticity theory. The small-scale effect is considered by employing Eringen's nonlocal elasticity theory (ENET). Zinc oxide and lithium niobate are assumed to be the constituent materials of the nanoscale structure. The nonlocal governing equations of the piezoelectric nanobeam are derived using Hamilton's principle and the Euler-Bernoulli beam theory, and then solved analytically. The effects of various parameters on the wave frequency and phase velocity of the SFG piezoelectric nanobeam are examined and presented in a series of illustrations.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Physics, Multidisciplinary

Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories

M. S. H. Al-Furjan, Mostafa Habibi, Farzad Ebrahimi, Kianoosh Mohammadi, Hamed Safarpour

Summary: This paper investigates the wave propagation behavior of a high-speed rotating laminated nanocomposite cylindrical shell using classic, strain gradient, nonlocal and nonlocal strain gradient theories. The results show that wave number, angular velocity, and different types of laminated composites have a significant impact on the phase velocity of the nanocomposite structure.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Mechanics

Static stability analysis of multi-scale hybrid agglomerated nanocomposite shells

Farzad Ebrahimi, Ali Dabbagh, Abbas Rastgoo

Summary: This paper investigates the buckling problem of a multi-scale hybrid nanocomposite shell for the first time while the cylinder is supposed to be rested on an elastic substrate. The effects of nanofillers' agglomeration and the equivalent material properties of the carbon nanotube-reinforced (CNTR) nanocomposite are studied. The results provide insights into the failure behavior and propose strategies to enhance the buckling resistance of the nanocomposite structure.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2023)

Article Physics, Multidisciplinary

Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment

Farzad Ebrahimi, Ali Seyfi, Mostafa Nouraei, Parisa Haghi

Summary: The study investigates wave propagation in simply supported functionally graded beams exposed to magneto-thermal environments and embedded on two-parameter elastic foundation. The influence of various parameters on wave frequency and phase velocity of the beams is compared and thoroughly discussed to highlight key findings.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Computer Science, Interdisciplinary Applications

Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow

M. S. H. Al-Furjan, Seyedeh Yasaman Bolandi, Mostafa Habibi, Farzad Ebrahimi, Guojin Chen, Hamed Safarpour

Summary: This study presents critical angular velocity, critical velocity of fluid flow, and vibration control analysis of a rotating multi-hybrid nanocomposite reinforced cylindrical microshell. By utilizing a non-classical model, various factors such as Coriolis and centrifugal effects, strains and stresses, and external voltage are considered. The study also applies the rule of mixtures and a modified Halpin-Tsai theory for elasticity modulus, and utilizes a Proportional-Derivative (PD) controller for sensor output control.

ENGINEERING WITH COMPUTERS (2022)

Article Materials Science, Multidisciplinary

F-doped Co3O4 with Pt-like activity and excellent stability for hydrogen evolution reaction in alkaline media

Deyong Zheng, Huihui Jin, Yucong Liao, Pengxia Ji

Summary: In this study, a highly stable and efficient catalyst, fluorine-doped Co3O4 (F-Co3O4), was developed for hydrogen production by water electrolysis. The F-Co3O4 catalyst exhibited a remarkable reduction in overpotential and demonstrated excellent stability for over 100 hours.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of the addition of Cu6Sn5 nanoparticles on the growth of intermetallic compounds at the interfaces of Sn3.0Ag0.5Cu solder joints

Ziwen Lv, Jintao Wang, Fengyi Wang, Jianqiang Wang, Fuquan Li, Hongtao Chen

Summary: Adding Cu6Sn5 nano particles can effectively inhibit the overgrowth of intermetallic compounds at the interfaces of solder joints in electronic devices, providing a solution to this issue. A new growth mechanism of intermetallic compounds at the interfaces was identified.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

BiOI/AgI/Ag plasmonic heterostructure for efficient photoelectrochemical water splitting

Jun Wang, Jiawei Chen, Wanru Liao, Fangyang Liu, Min Liu, Liangxing Jiang

Summary: A BiOI/AgI/Ag plasmonic heterostructure photocathode was successfully designed through electrodeposition, ion-exchange, and illumination methods. This photocathode exhibits superior performance in photoelectrochemical water splitting.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Ni@O-doped carbon Mott-Schottky heterojunctions to enhance sulfur conversion kinetics

Xiaoxiao Liu, Xianxian Zhou, Xiaotao Ma, Qinbo Yuan, Shibin Liu

Summary: In this study, the authors propose a method to accelerate the reaction of polysulfides in lithium-sulfur batteries using a Ni@OC Mott-Schottky heterojunction as a catalyst. The experimental results demonstrate that the charge redistribution at the Ni@OC interface accelerates electron transfer and enhances catalytic activity, leading to improved reaction kinetics and battery performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Effect of fixture boundary conditions for low-velocity impact: A focus on composites with different matrix and fibers

Dayou Ma, Mohammad Rezasefat, Joziel Aparecido da Cruz, Sandro Campos Amico, Marco Giglio, Andrea Manes

Summary: The matrix has a significant effect on the impact resistance of composite materials. Replacing a brittle polymer with a more flexible one can improve impact resistance, but it poses challenges to standard testing methods. This study designs a new fixture for testing the low-velocity impact of soft composites and investigates the effect of the fixture on the mechanical performance.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Synergistic effect of defects and heterostructures endowing bronze titanium dioxide with superior lithium storage performances

Lingchang Wang, Qihang Yang, Huzhen Li, Ming Wei, Qian Wang, Zhenzhong Hu, Mengmeng Zhen

Summary: Bronze titanium dioxide (TiO2(B)) is a promising anode material for lithium-ion batteries due to its high specific capacity. However, its practical applications are hindered by poor conductivity and limited electrochemical kinetics. In this study, TiO2(B)-carbon nanosheets heterostructures are synthesized to enhance the cycling performance and rate capability of TiO2(B).

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Sustained electromagnetic parameters of barium ferrite and epoxy nanocomposites for patch antenna miniaturization over GHz frequency range

Atul Thakur, Ritesh Verma, Ankush Chauhan, Fayu Wan, Preeti Thakur

Summary: In this study, BaFe12O19 and BaFe12O19: Epoxy (50:50) nanocomposites were synthesized using the co-precipitation method. The structural information and material properties, such as crystallite size and electrical conductivity, were characterized by XRD, FESEM, EDX, and TEM techniques.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

In-situ construction of CoS2@NC hierarchical binder-free cathode for advanced Li-CO2 batteries

Jingyu Wu, Xinyan Ma, Yong Yang

Summary: A well-defined CoS2@NC(CS-500) hierarchical binder-free catalyst cathode is constructed through in-situ grown of ZIF-67 on carbon cloth and high-temperature carbonization. The cathode shows excellent reaction kinetics and electrochemical performance, providing inspiration for developing advanced Li-CO2 battery catalysts.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

K5Eu1-xHox(MoO4)4: Structures and luminescence properties

Svetlana M. Posokhova, Vladimir A. Morozov, Kirill N. Boldyrev, Dina Deyneko, Erzhena T. Pavlova, Bogdan I. Lazoryak

Summary: This study explores the impact of synthesis method and composition on the structure and luminescence properties of K5Eu1-xHox(MoO4)4 with the palmierite-type matrix. The co-doping of Eu3+ and Ho3+ ions plays a critical role in manipulating charge transfer and luminescence efficiency in the visible and infrared regions.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Benzonitrile/pyridylbenzoimidazole hybrid electron-transport material for efficient phosphorescence and TADF OLEDs

Jian Wang, Yeting Tao, Jingsheng Wang, Youtian Tao

Summary: A new electron-transport material iTPyBI-CN is developed through non-catalytic C-N coupling reaction. It exhibits better electroluminescence efficiency in organic light-emitting diodes compared to the commercial material TPBI, due to its twisted geometry and higher energy levels.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Microscopic characteristics and thermodynamic property changes in limestone under high-temperature treatment

Tao Zhu, Feng Huang, Shuo Li, Yang Zhou

Summary: This article combines XRD analysis and microscopic structural observation to investigate the changes in limestone after high-temperature treatment. It finds that 500 degrees C is the critical temperature for crystalline and spatial arrangement changes in limestone, and the thermal conductivity, specific heat capacity, and heat storage coefficient gradually decrease after thermal treatment.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Novel synthesis of ZnO nanostructure from galvanization waste for antibacterial application

Muhammad Haekal Habibie, Fransiska Sri Herwahyu Krismastuti, Abdi Wira Septama, Faiza Maryani, Vivi Fauzia

Summary: This study focuses on the synthesis of zinc oxide nanostructure from zinc recovered from galvanization ash and highlights its potential as a sustainable source of zinc and as an antibacterial agent.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Biomimetic mineralization engineered phycocyanin with improved stability and antioxidantive activity under environmental stress

Jingyi Li, Yixin Xing, Wei Gu, Shousi Lu

Summary: In this study, PC@CaP microparticles were fabricated using biomimetic mineralization. The results showed that under environmental stress, PC@CaP exhibited improved stability and antioxidative activity, indicating its potential use in high-added value fields.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

ZIF-8 nanoparticles combined with fibroin protein co-modified TiO2 nanotube arrays to construct a drug sustained-release platform

Yan Liu, Shunyou Chen

Summary: In this study, TNTs were used as a drug carrier and modified with ZIF-8 and silk fibroin to obtain a new drug loading platform. The results showed that this drug-loaded platform had a good drug release effect in vitro and could promote cell proliferation and osteogenic differentiation.

MATERIALS LETTERS (2024)

Article Materials Science, Multidisciplinary

Observation of stacking faults in ε-phase InSe crystal

Chunhui Zhu, Wentao Wang, Qing Zhen, Xinning Huang, Shixin Li, Shaochang Wang, Xiaoping Ma, Xiaoxia Liu, Yalong Jiao, Kai Sun, Zhuangzhi Li, Huaixin Yang, Jianqi Li

Summary: A type of stacking fault is revealed in e-InSe crystal, which is associated with a small stacking-fault energy and shows exceptional plasticity.

MATERIALS LETTERS (2024)