4.2 Article

Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method

期刊

GRANULAR MATTER
卷 14, 期 4, 页码 483-503

出版社

SPRINGER
DOI: 10.1007/s10035-012-0340-5

关键词

Discrete elements; Simulation; Micro mechanics; Granular media; Mechanical properties; Anisotropy

资金

  1. Ferdowsi University of Mashhad [18159-07/4/90]

向作者/读者索取更多资源

This paper investigates the mechanical behavior of inherently-anisotropic granular materials from macroscopic and microscopic points of view. The study is achieved by simulating biaxial compression tests performed on granular assemblies by using numerical discrete element method. In the same category of numerical studies found in the literature, the simulations were performed by considering elliptical/oval particles. In the present study, however, the shape of particles is considered as convex polygons, which mostly resembles real sand grains. Particle assemblies with four different bedding angles were tested. Similar to what observed in experiment, inherent anisotropy has a significant effect on macroscopic mechanical behavior of granular materials. The shear strength and dilative behavior of assemblies were found to decrease as the bedding angle increases. Evolution of the microstructure of all samples and the influence of bedding angle on the fabric and force anisotropy during loading process were investigated. It is seen that the microscopic evolutions in the fabric can justify well the macroscopic behavior of granular assemblies. It is found that the long axis of particles tend to be inclined perpendicular to the loading axis, which results in generating more stable column-like microstructures in order to transfer the applied load. Moreover, the number of contacts as well as the magnitude of forces among particles varies in different directions during the loading process and the initial anisotropy condition totally evolves due to the induced anisotropy within samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据