4.4 Article

N-Glycans of SREC-I (scavenger receptor expressed by endothelial cells): Essential role for ligand binding, trafficking and stability

期刊

GLYCOBIOLOGY
卷 22, 期 5, 页码 714-724

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cws010

关键词

atherosclerosis; N-glycan; scavenger receptor

资金

  1. Japan Society for the Promotion of Science [20249018, 17590249]
  2. global COE from the Ministry of Education, Culture, Sports, Science and Technology of Japan
  3. National Institute of Biomedical Innovation (NIBIO), Japan
  4. Grants-in-Aid for Scientific Research [23390081, 21590084, 17590249] Funding Source: KAKEN

向作者/读者索取更多资源

Scavenger receptor expressed by endothelial cells (SREC-I) mediates the endocytosis of chemically modified lipoproteins such as acetylated low-density lipoprotein (Ac-LDL) and oxidized LDL and is implicated in atherogenesis. We produced recombinant SREC-I in Chinese hamster ovary-K1 cells and identified three potential glycosylation sites, Asn(289), Asn(382) and Asn(393), which were all glycosylated. To determine the function of N-glycans in SREC-I, we characterized SREC-I mutant proteins by intracellular distribution and the cellular incorporation rate of Ac-LDL. N382Q/N393Q and N289Q/N382Q/N393Q were sequestered in the endoplasmic reticulum, resulting in a severe reduction in the cellular incorporation of Ac-LDL. N382Q showed a normal cell surface residency and an enhanced affinity for Ac-LDL, resulting in an elevated Ac-LDL cellular incorporation. These results indicate that the N-glycan of Asn(393) regulates the intracellular sorting of SREC-I and that the N-glycan of Asn(382) controls ligand-binding affinity. Furthermore, we detected an enhanced trypsin sensitivity of the N289Q. Glycan structure analyses revealed that the core-fucosylated bi-antennary is the common major structure at all glycosylation sites. In addition, tri- and tetra-antennary were detected as minor constituents at Asn(289). A bisecting GlcNAc was also detected at Asn(382) and Asn(393). Structural analyses and homology modeling of SREC-I suggest that the N-glycan bearing a beta 1-6GlcNAc branch at Asn(289) protects from proteinase attack and thus confers a higher stability on SREC-I. These data indicate that Asn(289)-, Asn(382)- and Asn(393)-linked N-glycans of SREC-I have distinct functions in regulating proteolytic resistance, ligand-binding affinity and subcellular localization, all of which might be involved in the development of atherogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据