4.8 Article

Scale criticality in estimating ecosystem carbon dynamics

期刊

GLOBAL CHANGE BIOLOGY
卷 20, 期 7, 页码 2240-2251

出版社

WILEY
DOI: 10.1111/gcb.12496

关键词

carbon cycle; disturbance; geospatial extent; process; scaling; spatial resolution

资金

  1. National Basic Research Program of China on Global Change [2010CB50600]
  2. National Natural Science Foundation of China [41071050, 31021001]
  3. U.S. Geological Survey's Land Carbon Project
  4. U.S. Carbon Trends Project under the Land Change Science (LCS) Program

向作者/读者索取更多资源

Scaling is central to ecology and Earth system sciences. However, the importance of scale (i.e. resolution and extent) for understanding carbon dynamics across scales is poorly understood and quantified. We simulated carbon dynamics under a wide range of combinations of resolution (nine spatial resolutions of 250 m, 500 m, 1 km, 2 km, 5 km, 10 km, 20 km, 50 km, and 100 km) and extent (57 geospatial extents ranging from 108 to 1 247 034 km(2)) in the southeastern United States to explore the existence of scale dependence of the simulated regional carbon balance. Results clearly show the existence of a critical threshold resolution for estimating carbon sequestration within a given extent and an error limit. Furthermore, an invariant power law scaling relationship was found between the critical resolution and the spatial extent as the critical resolution is proportional to A(n) (n is a constant, and A is the extent). Scale criticality and the power law relationship might be driven by the power law probability distributions of land surface and ecological quantities including disturbances at landscape to regional scales. The current overwhelming practices without considering scale criticality might have largely contributed to difficulties in balancing carbon budgets at regional and global scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据