4.8 Article

Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison

期刊

GLOBAL CHANGE BIOLOGY
卷 16, 期 4, 页码 1229-1246

出版社

WILEY
DOI: 10.1111/j.1365-2486.2009.02062.x

关键词

coral bleaching; coral reefs; global climate change; quantitative genetic model; size-structured matrix model

资金

  1. NSF [EF-0742521]
  2. Office of Science, U.S. Department of Energy

向作者/读者索取更多资源

Multiple anthropogenic impacts, including bleaching from climate change-related thermal stress, threaten coral reefs. Protecting coral capacity to respond to the increase in future thermal stress expected with climate change can involve (1) protecting coral reefs with characteristics indicative of greater resistance and resilience to climate change, and (2) reducing other anthropogenic impacts that are more likely to reduce coral resistance and resilience to climate change. Here, we quantitatively compare possible priorities and existing recommendations for protecting coral response capacity to climate change. Specifically, we explore the relative importance of the relevant dynamics, processes, and parameters in a size-structured model of coral and zooxanthellae ecological and evolutionary dynamics given projected future thermal stress. Model results with varying initial conditions indicate that protecting diverse coral communities is critical, and protecting communities with higher abundances of more thermally tolerant coral species and symbiont types secondary, to the long-term maintenance of coral cover. A sensitivity analysis of the coral population size in each size class and the total coral cover with respect to all parameter values suggests greater relative importance of reducing additional anthropogenic impacts that affect coral-macroalgal competition, early coral life history stages, and coral survivorship (compared with reproduction, growth, and shrinkage). Finally, model results with temperature trajectories from different locations, with and without connectivity, indicate that protection of, and connectivity to, low-thermal-stress locations may enhance the capacity for corals to respond to climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Fisheries

Harvest control rules used in US federal fisheries management and implications for climate resilience

Christopher M. Free, Tracey Mangin, John Wiedenmann, Conner Smith, Halley McVeigh, Steven D. Gaines

Summary: Climate change is impacting marine fisheries productivity and the effectiveness of historical management approaches. Harvest control rules offer a way to enhance climate resilience, but the flexibility in specifying these rules has resulted in a variety of approaches with varying levels of resilience to climate change. We examined the control rules for all 507 US federally managed fish stocks and identified seven typologies, along with their advantages and disadvantages for managing fisheries under climate change. Based on our findings, we provide seven recommendations to improve the resilience of US federally managed fisheries to climate change.

FISH AND FISHERIES (2023)

Article Limnology

Coral rubble dynamics in the Anthropocene and implications for reef recovery

Tania M. M. Kenyon, Christopher Doropoulos, Kennedy Wolfe, Gregory E. E. Webb, Sophie Dove, Daniel Harris, Peter J. J. Mumby

Summary: This article reviews the dynamics of rubble beds on coral reefs, with a focus on the changes expected in the generation, mobilization, binding, and coral recruitment of rubble on future reefs. It predicts that major disturbances, such as storms and coral bleaching, will increase in intensity and frequency, leading to larger quantities of coral rubble. With smaller recovery windows and increased bioerosion, smaller and less complex rubble pieces will be generated more often. The time available for binding will be reduced, and changing ocean chemistry may affect the efficacy of binders. Ultimately, increased rubble cover will negatively impact coral recruitment into rubble beds.

LIMNOLOGY AND OCEANOGRAPHY (2023)

Article Marine & Freshwater Biology

Novel rubble-dwelling predators of herbivorous juvenile crown-of-thorns starfish (Acanthaster sp.)

Amelia A. A. Desbiens, Peter J. J. Mumby, Symon Dworjanyn, Eva E. Plaganyi, Sven Uthicke, Kennedy Wolfe

Summary: This study investigated the predators of crown-of-thorns starfish (CoTS) and found 26 novel predators, but only 10 species regularly consumed juvenile CoTS. Most predation resulted in severed bodies and missing arms, rather than total consumption. The research highlights the importance of predators during the juvenile stage in controlling CoTS populations.

CORAL REEFS (2023)

Article Ecology

Hierarchical drivers of cryptic biodiversity on coral reefs

Kennedy Wolfe, Tania M. Kenyon, Amelia Desbiens, Kimberley de la Motte, Peter J. Mumby

Summary: Declines in habitat complexity have led to ecological degradation in various ecosystems. Coral reefs have served as a model for studying such changes, but previous research has mainly focused on corals and fish, overlooking the dominant role of small cryptic organisms. This study used a hierarchical framework to explore whether broad seascape parameters or nested microhabitat processes better describe cryptofauna communities in coral rubble. The results showed that microhabitat complexity influenced sessile organism cover, which in turn shaped the motile cryptofauna community.

ECOLOGICAL MONOGRAPHS (2023)

Article Fisheries

Impact of the 2014-2016 marine heatwave on US and Canada West Coast fisheries: Surprises and lessons from key case studies

Christopher M. Free, Sean C. Anderson, Elizabeth A. Hellmers, Barbara A. Muhling, Michael O. Navarro, Kate Richerson, Lauren A. Rogers, William H. Satterthwaite, Andrew R. Thompson, Jenn M. Burt, Steven D. Gaines, Kristin N. Marshall, J. Wilson White, Lyall F. Bellquist

Summary: Marine heatwaves are increasingly impacting marine ecosystems, leading to cascading effects on coastal economies, communities, and food systems. They offer crucial insights into future climate change and stress test fisheries social-ecological systems, revealing vulnerabilities and resilience. The 2014-16 Northeast Pacific heatwave was the strongest and longest on record, resulting in significant ecological changes that affected fisheries and human livelihoods.

FISH AND FISHERIES (2023)

Article Biodiversity Conservation

Demographic resilience may sustain significant coral populations in a 2°C-warmer world

Robert A. B. Mason, Yves-Marie Bozec, Peter J. Mumby

Summary: This article analyses the future scenarios of the Great Barrier Reef under various realistic drivers and finds that under a limited warming scenario, the coral cover can eventually recover to present-day levels. However, under higher warming scenarios, the coral cover declines drastically and may even disappear.

GLOBAL CHANGE BIOLOGY (2023)

Article Biodiversity Conservation

Moving beyond heritability in the search for coral adaptive potential

Thomas J. Richards, Katrina McGuigan, J. David Aguirre, Adriana Humanes, Yves-Marie Bozec, Peter J. Mumby, Cynthia Riginos

Summary: Global environmental change is happening rapidly, with coral reefs being one of the most threatened ecosystems. To ensure the survival of wild populations, adaptation is necessary. However, our understanding of the complex ecological and evolutionary dynamics of corals is limited, hindering predictions about their ability to adapt to future conditions.

GLOBAL CHANGE BIOLOGY (2023)

Article Biodiversity Conservation

Small-scale habitat complexity preserves ecosystem services on coral reefs

Chelsey M. Beese, Peter J. Mumby, Alice Rogers

Summary: The quality of coral reef habitats is declining due to heatwaves and other disturbances, resulting in reduced complexity and energy transfer to higher trophic levels. By using a size-based ecosystem model, researchers found that providing refuge for fish between 5 and 10 cm in length can significantly enhance fish biomass and fisheries productivity. The study also identifies refuge profiles that can improve ecosystem service provision by up to sixfold.

JOURNAL OF APPLIED ECOLOGY (2023)

Article Environmental Sciences

Setting sustainable limits on anchoring to improve the resilience of coral reefs

Robert A. B. Mason, Yves-Marie Bozec, Peter J. Mumby

Summary: Boat anchoring is a common practice at coral reefs with high economic or social value, but its impact on reef resilience has been understudied. Using an individual-based model, we simulated the effects of anchor damage on coral populations and estimated the carrying capacity of anchoring for different coral assemblages. We found that even a small to medium-sized recreational vessel can cause 0 to 3.1 anchor strikes per hectare per day. In a case study of the Great Barrier Reef, we demonstrated that mitigating anchoring can lead to significant coral gains under bleaching scenarios.

MARINE POLLUTION BULLETIN (2023)

Article Ecology

Emigration patterns of motile cryptofauna and their implications for trophic functioning in coral reefs

Kennedy Wolfe, Amelia A. A. Desbiens, Peter J. J. Mumby

Summary: Patterns of movement of marine species can provide valuable information about reproduction and dispersal strategies, species interactions, trophodynamics, and vulnerability to change, which is crucial for population and ecosystem management. In coral reefs, the highest density and diversity of metazoan taxa are found in dead coral and rubble, but the energy stored in rubble is mainly accessible to small individuals, limiting its availability to higher trophic levels.

ECOLOGY AND EVOLUTION (2023)

Article Ecology

Control efforts of crown-of-thorns starfish outbreaks to limit future coral decline across the Great Barrier Reef

Carolina Castro-Sanguino, Yves-Marie Bozec, Scott A. Condie, Cameron S. Fletcher, Karlo Hock, Chris Roelfsema, David A. Westcott, Peter J. Mumby

Summary: CoTS outbreaks on the Great Barrier Reef in Australia have caused significant damage to coral ecosystems. This study evaluates the effectiveness of the current CoTS control program and suggests increasing control efforts to ensure coral persistence in the face of climate change impacts.

ECOSPHERE (2023)

Article Biology

No apparent trade-offs associated with heat tolerance in a reef-building coral

Liam Lachs, Adriana Humanes, Daniel R. Pygas, John C. Bythell, Peter J. Mumby, Renata Ferrari, Will F. Figueira, Elizabeth Beauchamp, Holly K. East, Alasdair J. Edwards, Yimnang Golbuu, Helios M. Martinez, Brigitte Sommer, Eveline van der Steeg, James R. Guest

Summary: As marine species adapt to climate change, their heat tolerance will be under strong selection, but trade-offs between heat tolerance and other traits may compromise adaptation. The study focused on reef-building corals and found no trade-offs between heat tolerance and fecundity or growth. Surprisingly, faster-growing corals tended to bleach and die at higher levels of heat stress. Overall, this suggests that some high-performing corals excel across multiple traits and trade-offs may not be major barriers to adaptation or evolution interventions.

COMMUNICATIONS BIOLOGY (2023)

Article Environmental Studies

Small island nations can achieve food security benefits through climate-adaptive blue food governance by 2050

Lida Teneva, Christopher M. Free, Andrew Hume, Vera N. Agostini, Carissa J. Klein, Reg A. Watson, Steven D. Gaines

Summary: The study finds that small island nations can improve food self-sufficiency from the sea by implementing climate-adaptive fisheries governance strategies. By adjusting fisheries management every 10 years, some small island nations can achieve seafood surplus by 2050. International financial and capacity investments can support the realization of food security from the sea for those nations.

MARINE POLICY (2023)

Article Marine & Freshwater Biology

Fertilisation kinetics among common Indo-Pacific broadcast spawning corals with distinct and shared functional traits

Elizabeth Buccheri, Gerard F. Ricardo, Russell C. Babcock, Peter J. Mumby, Christopher Doropoulos

Summary: This study investigated the sensitivity of coral reproduction to changes in sperm concentration and contact time between gametes. The results showed that fertilisation was most successful at high sperm concentrations and longer contact times, with variations between different coral species.

CORAL REEFS (2023)

Article Multidisciplinary Sciences

Emergent increase in coral thermal tolerance reduces mass bleaching under climate change

Liam Lachs, Simon D. D. Donner, Peter J. J. Mumby, John C. C. Bythell, Adriana Humanes, Holly K. K. East, James R. R. Guest

Summary: Recurrent mass bleaching events pose a threat to coral reefs and their future. However, this study suggests that the thermal tolerance of coral assemblages in a remote Pacific coral reef system has been increasing, leading to less severe bleaching impacts. Future climate projections indicate that further increases in thermal tolerance could substantially reduce bleaching trajectories, highlighting the importance of reducing carbon emissions.

NATURE COMMUNICATIONS (2023)

暂无数据