4.8 Article

Spatial scaling of ecosystem C and N in a subtropical savanna landscape

期刊

GLOBAL CHANGE BIOLOGY
卷 16, 期 8, 页码 2213-2223

出版社

WILEY
DOI: 10.1111/j.1365-2486.2009.02099.x

关键词

carbon sequestration; modified t-test for correlation; Prosopis glandulosa; quadrat variance methods; savanna parkland; scale; soil organic carbon; woody encroachment

资金

  1. National Science Foundation [DEB-9981723]
  2. Texas AM University

向作者/读者索取更多资源

Widely occurred woody encroachment in grass-dominated ecosystems has the potential to influence soil organic carbon (SOC) and total nitrogen (TN) pools at local, regional, and global scales. Evaluation of this potential requires assessment of both pool sizes and their spatial patterns. We quantified SOC and TN, their relationships with soil and vegetation attributes, and their spatial scaling along a catena (hill-slope) gradient in the southern Great Plains, USA where woody cover has increased substantially over the past 100 years. Quadrat variance analysis revealed spatial variation in SOC and TN at two scales. The larger scale variation (40-45 m) was approximately the distance between centers of woody plant communities and their adjoining herbaceous patches. The smaller scale variation (10 m) appeared to reflect the local influence of shrubs on SOC and TN. Litter, root biomass, shrub, and tree basal area (a proxy for plant age) exhibited not only similar spatial scales, but also strong correlations with SOC and TN, suggesting invasive woody plants alter both the storage and spatial scaling of SOC and TN through ecological processes related primarily to root turnover and, to a lesser extent litter production, as mediated by time of occupancy. Forb and grass biomass were not significantly correlated with SOC and TN suggesting that changes in herbaceous vegetation have not been the driving force for the observed changes in SOC and TN. Because SOC and TN varied at two scales, it would be inappropriate to estimate SOC and TN pools at broad scales by extrapolating from point sampling at fine scales. Sampling designs that capture variation at multiple scales are required to estimate SOC and TN pools at broader scales. Knowledge of spatial scaling and correlations will be necessary to design field sampling protocols to quantify the biogeochemical consequences of woody plant encroachment at broad scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据