4.6 Article

NG2 Cell Response in the CNP-EGFP Mouse After Contusive Spinal Cord Injury

期刊

GLIA
卷 57, 期 3, 页码 270-285

出版社

WILEY
DOI: 10.1002/glia.20755

关键词

oligodendrocyte progenitor cells; olig2; CNP gene; endogenous repair; cell proliferation; glial growth factor; fibroblast growth factor

资金

  1. National Multiple Sclerosis Society [RG3712]
  2. NRSA [5F31NS051086-02]
  3. Christopher Reeve and Sam Schmidt Foundations [WB2-0403]
  4. NTH
  5. NINDS [R01-NS045702, R01-NS056427, R01-NS035647]

向作者/读者索取更多资源

NG2(+) cells in the adult CNS are a heterogeneous population. The extent to which the subpopulation of NG2(+) cells that function as oligodendrocyte progenitor cells (OPCs) respond to spinal cord injury (SCI) and recapitulate their normal developmental progression remains unclear. We used the CNP-EGFP mouse, in which oligodendrocyte lineage cells express EGFP, to study NG2+ cells in the normal and injured spinal cord. In white matter of uninjured mice, bipolar EGFP(+)NG2(+) cells and multipolar EGFP(neg)NG2(+) cells were identified. After SCI, EGFP(+)NG2(+) cell proliferation in residual white matter peaked at 3 days post injury (DPI) rostral to the epicenter, while EGFP'gNG2' cell proliferation peaked at 7 DPI at the epicenter. The expression of transcription factors, Olig2, Sox10, and Sox17, and the basic electrophysiological membrane parameters and potassium current phenotype of the EGFP(+)NG2(+) population after injury were consistent with those of proliferative OPCs during development. EGFP(neg)NG2(+) cells did not express transcription factors involved in oligodendrogenesis. EGFP(+)CC1(+) oligodendrocytes at 6 weeks included cells that incorporated BrdU during the peak of EGFP(+)NG2(+) cell proliferation. EGFP(neg)9CC1(+) oligodendrocytes were never observed. Treatment with glial growth factor 2 and fibroblast growth factor 2 enhanced oligodendrogenesis and increased the number of EGFP(neg)NG2(+) cells. Therefore, based on EGFP and transcription factor expression, spatio-temporal proliferation patterns, and response to growth factors, two populations of NG2(+) cells can be identified that react to SCI. The EGFP(+)NG2(+) cells undergo cellular and physiological changes in response to SCI that are similar to those that occur in early postnatal NG2(+) cells during developmental oligodendrogenesis. (C) 2008 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据