4.6 Article

Elastic imaging and time-lapse migration based on adjoint methods

期刊

GEOPHYSICS
卷 74, 期 6, 页码 WCA167-WCA177

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.3261747

关键词

-

资金

  1. Directorate For Geosciences
  2. Division Of Earth Sciences [0849322] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have drawn connections between imaging in exploration seismology, adjoint methods, and emerging finite-frequency tomography. All of these techniques rely on spatial and temporal constructive interference between observed and simulated waveforms to map locations of structural anomalies. Modem numerical methods and computers have facilitated the accurate and efficient simulation of 3D acoustic, (an)elastic, and poroelastic wave propagation. Using a 2D cross section of the SEG/EAGE salt model, we have determined how such waveform simulations might be harnessed to improve onshore and offshore seismic imaging strategies and capabilities. We have found that the density sensitivity kernel in adjoint tomography is related closely to the imaging principle in exploration seismology, and that in elastic modeling the impedance kernel actually is a better diagnostic tool for reflector identification. The shear- and compressional-wave speed sensitivity kernels in adjoint tomography are related closely to finite-frequency banana-doughnut kernels, and these kernels are well suited for mapping larger-scale structure, i.e., for transmission tomography. These ideas have been substantiated by addressing problems in subsalt time-lapse migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据