4.7 Article

Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 39, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011GL049971

关键词

-

向作者/读者索取更多资源

Atmospheric delay is one of the major sources of error in repeat pass interferometry. We propose a new approach for correcting the topography-correlated components of this artifact. To this aim we use multiresolution wavelet analysis to identify the components of the unwrapped interferogram that correlate with topography. By using a forward wavelet transform we break down the digital elevation model and the unwrapped interferogram into their building blocks based on their frequency properties. We apply a cross-correlation analysis to identify correlated coefficients that represent the effect of the atmospheric delay. Thus, the correction to the unwrapped interferogram is obtained by down-weighting the correlated coefficients during inverse wavelet transform. We test this approach on real and synthetic data sets that are generated over the San Francisco Bay Area. We find that even in the presence of tectonic signals, this method is able to reduce the correlated component of the atmospheric delay by up to 75% and improves the signal in areas of high relief. The remaining part is most likely due to 3D heterogeneities of the atmosphere and can be reduced by integrating temporal information or using complementary observations or models of atmospheric delay. Citation: Shirzaei, M., and R. Burgmann (2012), Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms, Geophys. Res. Lett., 39, L01305, doi:10.1029/2011GL049971.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据