4.7 Article

Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 36, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009GL039652

关键词

-

资金

  1. UNLV High Pressure Science and Engineering Center ( HiPSEC)
  2. DOE- NNSA [DE- FC52- 06NA262740]
  3. U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE- AC0206CH11357]

向作者/读者索取更多资源

Siderite (FeCO3) forms a complete solid solution with magnesite (MgCO3), the most likely candidate for a mantle carbonate. Our experiments with natural siderite reveal spin pairing of d-orbital electrons of Fe2+ at 43 GPa, as evidenced by a sharp volume collapse of about 10%. The initially colorless crystals assume an intense green color after the transition, which progressively turns to red above 60 GPa. We present clear evidence for the instability of an intermediate spin state in siderite at ambient temperature. At the transition pressure, domains of high and low spin siderite coexist. The unit cell volume difference between magnesite and siderite is significantly decreased by the spin transition, enhancing the solubility between the two calcite-type minerals. A siderite component in magnesite at lower mantle pressure would significantly increase its density and slightly increase the carbonate bulk modulus. Citation: Lavina, B., P. Dera, R. T. Downs, V. Prakapenka, M. Rivers, S. Sutton, and M. Nicol (2009), Siderite at lower mantle conditions and the effects of the pressure-induced spinpairing transition, Geophys. Res. Lett., 36, L23306, doi: 10.1029/2009GL039652.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据