4.7 Article

Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 140, 期 -, 页码 334-348

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2014.05.023

关键词

-

资金

  1. Natural Science and Engineering Research Council [RES0007057]
  2. NASA Cosmo-chemistry NNH08ZDA001 N-COS Grant [NNX09AG41G]
  3. NASA Grant MFR [NNX13AG35G]
  4. NASA [473518, 118486, NNX09AG41G, NNX13AG35G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

The microtexture and mineralogy of shock melts in the Tissint martian meteorite were investigated using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and synchrotron micro X-ray diffraction to understand shock conditions and duration. Distinct mineral assemblages occur within and adjacent to the shock melts as a function of the thickness and hence cooling history. The matrix of thin veins and pockets of shock melt consists of clinopyroxene + ringwoodite perpendicular to stishovite embedded in glass with minor Fe-sulfide. The margins of host rock olivine in contact with the melt, as well as entrained olivine fragments, are now amorphosed silicate perovskite + magnesiowustite or clinopyroxene + magnesiowustite. The pressure stabilities of these mineral assemblages are similar to 15 GPa and > 19 GPa, respectively. The similar to 200-mu m-wide margin of a thicker, mm-size (up to 1.4 mm) shock melt vein contains clinopyroxene + olivine, with central regions comprising glass + vesicles + Fe-sulfide spheres. Fragments of host rock within the melt are polycrystalline olivine (after olivine) and tissintite + glass (after plagioclase). From these mineral assemblages the crystallization pressure at the vein edge was as high as 14 GPa. The interior crystallized at ambient pressure. The shock melts in Tissint quench-crystallized during and after release from the peak shock pressure; crystallization pressures and those determined from olivine dissociation therefore represent the minimum shock loading. Shock deformation in host rock minerals and complete transformation of plagioclase to maskelynite suggest the peak shock pressure experienced by Tissint >= 29-30 GPa. These pressure estimates support our assessment that the peak shock pressure in Tissint was significantly higher than the minimum 19 GPa required to transform olivine to silicate perovskite plus magnesiowustite. Small volumes of shock melt (< 100 mu m) quench rapidly (0.01 s), whereas thermal equilibration will occur within 1.2 s in larger volumes of melt (1 mm(2)). The apparent variation in shock pressure recorded by variable mineral assemblages within and around shock melts in Tissint is consistent with a shock pulse on the order of 10-20 ms combined with a longer duration of post-shock cooling and complex thermal history. This implies that the impact on Mars that shocked and ejected Tissint at similar to 1Ma was not exceptionally large. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据