4.5 Article

A systematic 2-D investigation into the mantle wedge's transient flow regime and thermal structure: Complexities arising from a hydrated rheology and thermal buoyancy

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 15, 期 1, 页码 28-51

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013GC005022

关键词

subduction; mantle wedge; arc volcanism; small-scale convection; rheology; melting

资金

  1. Department of Earth Science and Engineering at Imperial College
  2. NERC [NE/H015329/1]
  3. National Science Foundation MARGINS program [OCE-0841079, EAR-1141976]
  4. Office of Science and Technology through EPSRC's High End Computing Program
  5. Applied Modeling and Computation Group (AMCG) at Imperial College (IC) London
  6. NERC [NE/I024488/1, NE/I024429/1] Funding Source: UKRI
  7. Natural Environment Research Council [NE/H015329/1, NE/I024429/1, NE/I024488/1] Funding Source: researchfish

向作者/读者索取更多资源

Arc volcanism at subduction zones is likely regulated by the mantle wedge's flow regime and thermal structure and, hence, numerous studies have attempted to quantify the principal controls on mantle wedge conditions. In this paper, we build on these previous studies by undertaking a systematic 2-D numerical investigation into how a hydrated rheology and thermal buoyancy influence the wedge's flow regime and associated thermal structure. We quantify the role of a range of plausible: (i) water contents (0-5000 H/10(6)Si); (ii) subduction velocities (2-10 cm/yr); and (iii) upper-plate ages (50-120 Myr), finding that small-scale convection (SSC), resulting from Rayleigh-Taylor instabilities, or drips, off the base of the overriding lithosphere, is a typical occurrence. The morphology of SSC varies with viscosity and subduction parameters, with drips at their most prominent when subduction velocities and wedge viscosities are low. Our results confirm that high subduction velocities and wedge viscosities promote a dominantly corner-flow regime, and strong upper-plate erosion below the arc region. By contrast, we find that back-arc upper-plate erosion by SSC is largely controlled by wedge viscosity, occurring when: (i) viscosities are<5.10(18) Pa s; and (ii) the length of the upper plate, available for destabilization, exceeds the characteristic wavelength of instabilities. Thus, if hydrous weakening of wedge rheology extends at least 100-150 km from the trench, our 2-D models predict an unstable flow regime, resulting in temperature fluctuations of 50-100 K, which are sufficient to influence melting and the stability of hydrous minerals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据