4.5 Article

A comparison of mantle convection models featuring plates

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 15, 期 6, 页码 2689-2698

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013GC005211

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [HA 1765/24-1]
  2. Natural Sciences and Engineering Research Council of Canada [DG-327084-10]

向作者/读者索取更多资源

Oceanic plates are an integral part of the Earth's mantle and thus play an important role in its dynamics and evolution. To allow plate behavior to arise naturally in numerical mantle convection models, self-consistent plate generation methods apply a fully rheological approach (featuring a temperature-, pressure- and stress-dependent viscosity). However, due to the extreme local viscosity changes that the self-generation of model plates entails, their computational requirements are demanding. Alternative plate modeling methods specify the existence of plates explicitly but can also obtain dynamically determined velocities (e. g., by employing a force-balance method). Here we present modifications to a force-balance model by utilizing a rheology-dependent viscosity profile. Accordingly, plate viscosity and plate thickness are no longer prescribed by the modeler but now follow as a dynamic consequence of the temperature and stress dependence of the viscosity and the model's evolution. We describe the new method and present benchmark results for a rheologically self-consistent mantle convection model and the modified force-balance plate model. Our results show that both plate modeling methods lead to the same system behavior for a wide range of system parameters making the new method a powerful tool to also achieve plate-like surface motion naturally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据