4.5 Article

Significance of the concentration gradients associated with dunite bodies in the Josephine and Trinity ophiolites

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008GC001954

关键词

dunite; harzburgite; lherzolite; melt-rock reaction; reactive dissolution; concentration gradient

向作者/读者索取更多资源

Detailed transects were sampled across dunite bodies in the Josephine and Trinity ophiolites. The major peridotite lithologies sampled in the Josephine transect are a sequence of dunite and harzburgite and in the Trinity transect a sequence of dunite, harzburgite, lherzolite, and plagioclase lherzolite (DHL-PL). Major, minor, and selected trace element abundances in olivine, orthopyroxene, clinopyroxene, and spinel were measured. The composition profile from the Josephine transect has revealed a concentration gradient near the dunite-harzburgite contact. The composition profile from the Trinity transect has revealed several concentration gradients: two within the dunite, one in the harzburgite, and at least two in the plagioclase lherzolite. The composition profiles record complex histories of melt transport, melt-rock reaction, and subsequent subsolidus reequilibration. Analyses of closure distance suggest that compositional variation trends for a majority of major and minor elements in olivine, clinopyroxene, orthopyroxene, and spinel reported in this study were magmatic in origin. Subsolidus reequilibration may reduce the range or magnitude of variations for the 2+ cations such as Fe and Mg in olivine and spinel and significantly redistribute Ca and Li in coexisting minerals. Numerical simulations exploring the coupling of diffusion and advection in a porous matrix were used to explain compositional variations across the peridotite sequences. Melt flow from the host harzburgite into the dunite produces composition gradients near the dunite-harzburgite contacts similar to those from the Josephine transect. In contrast, melt flow from the dunite into the surrounding peridotite lithologies can produce concentration gradients similar to those observed in the Trinity transect. At least two chemically distinct episodes of melt flow within the same dunite channel system are proposed. Results from this study show that concentration gradients developed around the dunite-harzburgite and DHL-PL sequences can be used to infer part of the melt flow history of the dunite channel systems in the mantle. Results from this study and those from other ophiolite studies also demonstrate that concentration profiles in dunite and the surrounding peridotite lithologies are highly variable even among differing peridotite sequences within the same ophiolite, suggesting that the composition of instantaneous melt flowing through individual dunite channels is quite variable and the mantle source regions are heterogeneous.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据