4.3 Article

Powerful Multi-Marker Association Tests: Unifying Genomic Distance-Based Regression and Logistic Regression

期刊

GENETIC EPIDEMIOLOGY
卷 34, 期 7, 页码 680-688

出版社

WILEY
DOI: 10.1002/gepi.20529

关键词

Fisher's method; genome-wide association study; GWAS; multi-marker analysis; score test; SNP

资金

  1. NIH [GM081535, HL65462]

向作者/读者索取更多资源

To detect genetic association with common and complex diseases, many statistical tests have been proposed for candidate gene or genome-wide association studies with the case-control design. Due to linkage disequilibrium (LD), multi-marker association tests can gain power over single-marker tests with a Bonferroni multiple testing adjustment. Among many existing multi-marker association tests, most target to detect only one of many possible aspects in distributional differences between the genotypes of cases and controls, such as allele frequency differences, while a few new ones aim to target two or three aspects, all of which can be implemented in logistic regression. In contrast to logistic regression, a genomic distance-based regression (GDBR) approach aims to detect some high-order genotypic differences between cases and controls. A recent study has confirmed the high power of GDBR tests. At this moment, the popular logistic regression and the emerging GDBR approaches are completely unrelated; for example, one has to choose between the two. In this article, we reformulate GDBR as logistic regression, opening a venue to constructing other powerful tests while overcoming some limitations of GDBR. For example, asymptotic distributions can replace time-consuming permutations for deriving P-values and covariates, including gene-gene interactions, can be easily incorporated. Importantly, this reformulation facilitates combining GDBR with other existing methods in a unified framework of logistic regression. In particular, we show that Fisher's P-value combining method can boost statistical power by incorporating information from allele frequencies, Hardy-Weinberg disequilibrium, LD patterns, and other higher-order interactions among multi-markers as captured by GDBR. Genet. Epidemiol. 34:680-688, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据