4.2 Article

Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death

期刊

GENES TO CELLS
卷 20, 期 1, 页码 11-28

出版社

WILEY-BLACKWELL
DOI: 10.1111/gtc.12193

关键词

-

资金

  1. Japan Society for the Promotion of Science (JSPS) [19GS0316]
  2. Japanese Ministry of Education, Culture, Sports, Science, and Technology
  3. Grants-in-Aid for Scientific Research [19GS0316, 25650078] Funding Source: KAKEN

向作者/读者索取更多资源

Enterocyte shedding in the small intestine is often referred as an example of programmed cell death. However, little is known about the underlying mechanisms, although both apoptotic and nonapoptotic cell death have been suggested to play an important role. Here, we show by electron microscope that the majority of cells dying in the mouse small intestine do not display apoptotic characteristics. Chemical biological approach in vivo and in an organ culture showed that necrostatin-1 (Nec-1), an inhibitor of receptor-interacting protein 1 (RIP1, also called RIPK1), inhibited the shedding/nonapoptotic death of enterocyte, resulting in suppression of physiological enterocyte turnover. Moreover, RIP1 knockdown in vivo and RIP1 haploinsufficiency significantly suppressed physiological enterocyte turnover. Unlike Nec-1-sensitive (RIP1-dependent) cell death, so called necroptosis, which is also dependent on RIP3, physiological enterocyte turnover in RIP3-deficient mice was executed normally and still inhibited by Nec-1. As inhibition of the shedding/nonapoptotic death of enterocyte by Nec-1 resulted in suppression of crypt cell proliferation, the shedding process plays a dominant role over cell proliferation in maintaining homeostasis of enterocyte turnover. These results indicate that RIP1 plays a major role in physiological enterocyte turnover through a RIP3-independent nonapoptotic death mechanism in the mouse small intestine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据