4.8 Article

Disruption of Notch1 Induces Vascular Remodeling, Intussusceptive Angiogenesis, and Angiosarcomas in Livers of Mice

期刊

GASTROENTEROLOGY
卷 142, 期 4, 页码 967-U464

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2011.12.052

关键词

Vascular Tumor; Liver Cancer; Ephrin Signaling; Sinusoidal Capillarization

资金

  1. Swiss National Science Foundation (SNF) [323500-123714, 32323B_123815]
  2. Swiss National Science Foundation (SNF) [32323B_123815] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

BACKGROUND & AIMS: Notch signaling mediates embryonic vascular development and normal vascular remodeling; Notch1 knockout mice develop nodular regenerative hyperplasia (NRH). The pathogenesis of NRH is unclear, but has been associated with vascular injury in the liver sinusoids in clinical studies. We investigated the role of Notch1 signaling in liver sinusoidal endothelial cells (LSECs). METHODS: We studied MxCre Notch1(lox/lox) mice (conditional knockout mice without tissue-specific disruption of Notch1); mice with hepatocyte-specific knockout were created by crossing Notch1(lox/lox) with Alb-Cre(+/-) mice. Portal vein pressure was measured; morphology of the hepatic vasculature was assessed by histologic and scanning electron microscopy analyses. We performed functional and expression analyses of isolated liver cells. RESULTS: MxCre-induced knockout of Notch1 led to NRH, in the absence of fibrosis, with a persistent increase in proliferation of LSECs. Notch1 deletion led to de-differentiation, vascular remodeling of the hepatic sinusoidal microvasculature, intussusceptive angiogenesis, and dysregulation of ephrinB2/EphB4 and endothelial tyrosine kinase. Time-course experiments revealed that vascular changes preceded node transformation. MxCre Notch1(lox/lox) mice had reduced endothelial fenestrae and developed portal hypertension and hepatic angiosarcoma over time. In contrast, mice with hepatocyte-specific disruption of Notch1 had a normal phenotype. CONCLUSIONS: Notch1 signaling is required for vascular homeostasis of hepatic sinusoids; it maintains quiescence and differentiation of LSECs in adult mice. Disruption of Notch1 signaling in LSECs leads to spontaneous formation of angiosarcoma, indicating its role as a tumor suppressor in the liver endothelium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据