4.7 Article

Prediction of quality parameters of biomass pellets from proximate and ultimate analysis

期刊

FUEL
卷 111, 期 -, 页码 771-777

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2013.05.002

关键词

Biomass; Higher heating value; Mechanical durability; Proximate analysis; Ultimate analysis

资金

  1. Science Foundation Ireland [06/CP/E001]
  2. Science Foundation Ireland (SFI) [06/CP/E001] Funding Source: Science Foundation Ireland (SFI)

向作者/读者索取更多资源

The real-time prediction of crucial biomass pellet quality parameters such as higher heating value (HHV) and mechanical durability (MD) will allow for more efficient operation of energy production systems. Multiple linear regression (MLR) models were developed to predict HHV and MD from proximate and ultimate analysis of biomass pellets. A diverse range of biomasses from energy crops including pine, Miscanthus, reed canary grass, tall fescue and short rotation coppice willow were used to produce the pellets. HHV and MD of the pellets were predicted with coefficients of determination of 0.99 and 0.94, respectively, and standard errors of the estimate of 0.08 MJ kg (1) (Range: 16.39-18.92 MJ kg (1)) and 0.49% (Range: 92.6-97.5%), respectively. This study demonstrates that MLR can be used to predict additional information of HHV and MD of biomass pellets from proximate and ultimate analysis. Important quality indices for diverse biomass pellets are also reported. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Agricultural Engineering

Quantifying the economic and greenhouse gas balance advantages of establishing miscanthus from stem cuttings

John O'Loughlin, Kevin McDonnell, John Finnan

BIOMASS & BIOENERGY (2018)

Article Agricultural Engineering

Near infrared hyperspectral imaging for the prediction of gaseous and particulate matter emissions from pine wood pellets

Gary D. Gillespie, Aoife A. Gowen, John M. Finnan, John P. Carroll, Damien J. Farrelly, Kevin P. McDonnell

BIOSYSTEMS ENGINEERING (2019)

Article Energy & Fuels

The Use of Near-Infrared Spectroscopy for the Prediction of Gaseous and Particulate Emissions from Agricultural Feedstock Pellets

Gary D. Gillespie, Aoife A. Gowen, John M. Finnan, John P. Carroll, Damien J. Farrelly, Kevin P. McDonnell

ENERGY & FUELS (2019)

Article Food Science & Technology

Impact of heat treatment and acid gelation on polyphenol enriched milk samples

Mukaddes Kilic Bayraktar, Niamh B. Harbourne, Colette C. Fagan

LWT-FOOD SCIENCE AND TECHNOLOGY (2019)

Article Energy & Fuels

Microgeneration of Electricity Using a Solar Photovoltaic System in Ireland

Vinay Virupaksha, Mary Harty, Kevin McDonnell

ENERGIES (2019)

Article Energy & Fuels

Feasibility Study of Carbon Dioxide Plume Geothermal Systems in Germany-Utilising Carbon Dioxide for Energy

Kevin McDonnell, Levente Molnar, Mary Harty, Fionnuala Murphy

ENERGIES (2020)

Article Environmental Sciences

Anaerobic digestion of poultry litter - A consequential life cycle assessment

Ciara Beausang, Kevin McDonnell, Fionnuala Murphy

SCIENCE OF THE TOTAL ENVIRONMENT (2020)

Article Food Science & Technology

Improved recovery of higher boiling point volatiles during solvent-assisted flavour evaporation

Rosa C. Sullivan, Colette C. Fagan, Jane K. Parker

Summary: New data show that even low levels of fat can significantly reduce the recovery of volatile compounds. Therefore, selecting the appropriate extraction technique is crucial when extracting volatile compounds from high-fat foods.

FOOD ANALYTICAL METHODS (2021)

Article Computer Science, Artificial Intelligence

Can machine learning classification methods improve the prediction of leaf wetness in North-Western Europe compared to established empirical methods?

Gary D. Gillespie, Kevin P. McDonnell, Gregory M. P. O'Hare

Summary: Machine learning algorithms were found to be more accurate in classifying leaf wetness measurements compared to empirical models, with an average increase in classification accuracy of 4.85%. Increasing the relative humidity threshold improved the accuracy of the empirical models by 1.12%. Regional subsets of data had a greater impact on model accuracy than temporal subsets.

EXPERT SYSTEMS WITH APPLICATIONS (2021)

Article Green & Sustainable Science & Technology

The Potential for Hydrolysed Sheep Wool as a Sustainable Source of Fertiliser for Irish Agriculture

Gary D. Gillespie, Oyinlola Dada, Kevin P. McDonnell

Summary: Suppressed wool prices in Ireland have caused farmers to experience net losses per animal, as the cost of shearing exceeds the value of the wool. A study suggests that hydrolysed sheep wool could provide up to 15.8% of the nitrogen needed for Ireland's cereal crops, along with significant amounts of sulfur, zinc, and copper. The main cost associated with this process is purchasing wool at an economically favorable level. Based on the distribution of sheep, Athlone is identified as the most suitable location for a processing facility.

SUSTAINABILITY (2022)

Article Agronomy

Novel Approaches to Optimise Early Growth in Willow Crops

Isabella Donnelly, Kevin McDonnell, John Finnan

AGRICULTURE-BASEL (2019)

Article Agronomy

Effect of Harvest Timing and Soil Moisture Content on Compaction, Growth and Harvest Yield in a Miscanthus Cropping System

Michael G. O'Flynn, John M. Finnan, Edna M. Curley, Kevin P. McDonnell

AGRICULTURE-BASEL (2018)

Article Energy & Fuels

Preparation of surface modified nano-hydrotalcite and its applicaiton as a flow improver for crude oil

Yingna Du, Chen Huang, Wei Jiang, Qiangwei Yan, Yongfei Li, Gang Chen

Summary: In this study, anionic surfactants modified hydrotalcite was used as a flow improver for crude oil under low-temperature conditions. The modified hydrotalcite showed a significant viscosity reduction effect on crude oil. The mechanism of the modified hydrotalcite on viscosity and pour point of crude oil was explored through characterization and analysis of the modified hydrotalcite and oil samples.
Article Energy & Fuels

Effect of incorporated hybrid MIL-53(Al) and MWCNT into PES membrane for CO2/CH4 and CO2/N2 separation

Mohammad Saeid Rostami, Mohammad Mehdi Khodaei

Summary: In this study, a hybrid structure, MIL-53(Al)@MWCNT, was synthesized by combining MIL-53(Al) particles and -COOH functionalized multi-walled carbon nanotube (MWCNT). The hybrid structure was then embedded in a polyethersulfone (PES) polymer matrix to prepare a mixed matrix membrane (MMM) for CO2/CH4 and CO2/N2 separation. The addition of MWCNTs prevented MIL-53(Al) aggregation, improved membrane mechanical properties, and enhanced gas separation efficiency.
Article Energy & Fuels

Phase behaviour and physical properties of dimethyl ether (DME)/flue gas/ water/heavy oil systems under reservoir conditions

Yunlong Li, Desheng Huang, Xiaomeng Dong, Daoyong Yang

Summary: This study develops theoretical and experimental techniques to determine the phase behavior and physical properties of DME/flue gas/water/heavy oil systems. Eight constant composition expansion (CCE) tests are conducted to obtain new experimental data. A thermodynamic model is used to accurately predict saturation pressure and swelling factors, as well as the phase boundaries of N2/heavy oil systems and DME/CO2/heavy oil systems, with high accuracy.
Article Energy & Fuels

Comparison of CO2 absorption in DETA solution and [bmim]-[PF6] using thermodynamic and process modelling

Morteza Afkhamipour, Ebad Seifi, Arash Esmaeili, Mohammad Shamsi, Tohid N. Borhani

Summary: Non-conventional amines are being researched worldwide to overcome the limitations of traditional amines like MEA and MDEA. Adequate process and thermodynamic models are crucial for understanding the applicability and performance of these amines in CO2 absorption, but studies on process modeling for these amines are limited. This study used rate-based modeling and Deshmukh-Mather method to model CO2 absorption by DETA solution in a packed column, validated the model with experimental data, and conducted a sensitivity analysis of mass transfer correlations. The study also compared the CO2 absorption efficiency of DETA solution with an ionic solvent [bmim]-[PF6] and highlighted the importance of finding optimum operational parameters for maximum absorption efficiency.
Article Energy & Fuels

Interfacial tension of smart water and various crude oils

Arastoo Abdi, Mohamad Awarke, M. Reza Malayeri, Masoud Riazi

Summary: The utilization of smart water in EOR operations has gained attention, but more research is needed to understand the complex mechanisms involved. This study investigated the interfacial tension between smart water and crude oil, considering factors such as salt, pH, asphaltene type, and aged smart water. The results revealed that the hydration of ions in smart water plays a key role in its efficacy, with acidic and basic asphaltene acting as intrinsic surfactants. The pH also influenced the interfacial tension, and the aged smart water's interaction with crude oil depended on asphaltene type, salt, and salinity.
Article Energy & Fuels

Co-based metal-organic frameworks confined N-hydroxyphthalimide for enhancing aerobic desulfurization of diesel fuels

Dongao Zhu, Kun Zhu, Lixian Xu, Haiyan Huang, Jing He, Wenshuai Zhu, Huaming Li, Wei Jiang

Summary: In this study, cobalt-based metal-organic frameworks (Co-based MOFs) were used as supports and co-catalysts to confine the NHPI catalyst, solving the leaching issue. The NHPI@Co-MOF with carboxyl groups exhibited stronger acidity and facilitated the generation of active oxygen radicals O2•, resulting in enhanced catalytic activity. This research provides valuable insights into the selection of suitable organic linkers and broadens the research horizon of MOF hybrids in efficient oxidative desulfurization (ODS) applications.
Article Energy & Fuels

Influence of carbon-coated zero-valent iron-based nanoparticle concentration on continuous photosynthetic biogas upgrading

Edwin G. Hoyos, Gloria Amo-Duodu, U. Gulsum Kiral, Laura Vargas-Estrada, Raquel Lebrero, Rail Munoz

Summary: This study investigated the impact of carbon-coated zero-valent nanoparticle concentration on photosynthetic biogas upgrading. The addition of nanoparticles significantly increased microalgae productivity and enhanced nitrogen and phosphorus assimilation. The presence of nanoparticles also improved the quality of biomethane produced.
Article Energy & Fuels

Effect of aqueous phase recycling on iron evolution and environmental assessment during hydrothermal carbonization of dyeing sludge

Yao Xiao, Asma Leghari, Linfeng Liu, Fangchao Yu, Ming Gao, Lu Ding, Yu Yang, Xueli Chen, Xiaoyu Yan, Fuchen Wang

Summary: Iron is added as a flocculant in wastewater treatment and the hydrothermal carbonization (HTC) of sludge produces wastewater containing Fe. This study investigates the effect of aqueous phase (AP) recycling on hydrochar properties, iron evolution and environmental assessment during HTC of sludge. The results show that AP recycling process improves the dewatering performance of hydrochar and facilitates the recovery of Fe from the liquid phase.
Article Energy & Fuels

Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors

He Liang, Tao Wang, Zhenmin Luo, Jianliang Yu, Weizhai Yi, Fangming Cheng, Jingyu Zhao, Xingqing Yan, Jun Deng, Jihao Shi

Summary: This study investigated the influence of inhibitors (carbon dioxide, nitrogen, and heptafluoropropane) on the lower flammability limit of hydrogen and determined the critical inhibitory concentration needed for complete suppression. The impact of inhibitors on explosive characteristics was evaluated, and the inhibitory mechanism was analyzed with chemical kinetics. The results showed that with the increase of inhibitor quantity, the lower flammability limit of hydrogen also increased. The research findings can contribute to the safe utilization of hydrogen energy.
Article Energy & Fuels

Phosphotungstic acid supported on Zr-SBA-15 as an efficient catalyst for one-pot conversion of furfural to ?-valerolactone

Zonghui Liu, Zhongze Zhang, Yali Zhou, Ziling Wang, Mingyang Du, Zhe Wen, Bing Yan, Qingxiang Ma, Na Liu, Bing Xue

Summary: In this study, high-performance solid catalysts based on phosphotungstic acid (HPW) supported on Zr-SBA-15 were synthesized and evaluated for the one-pot conversion of furfural (FUR) to γ-valerolactone (GVL). The catalysts were characterized using various techniques, and the ratio of HPW and Zr was found to significantly affect the selectivity of GVL. The HPW/Zr-SBA-15 (2-4-15) catalyst exhibited the highest GVL yield (83%) under optimized reaction conditions, and it was determined that a balance between Bronsted acid sites (BAS) and Lewis acid sites (LAS) was crucial for achieving higher catalytic performance. The reaction parameters and catalyst stability were also investigated.
Article Energy & Fuels

Experimental study of droplet vaporization for conventional and renewable transportation fuels: Effects of physical properties and chemical composition

Michael Stoehr, Stephan Ruoff, Bastian Rauch, Wolfgang Meier, Patrick Le Clercq

Summary: As part of the global energy transition, an experimental study was conducted to understand the effects of different fuel properties on droplet vaporization for various conventional and alternative fuels. The study utilized a flow channel to measure the evolution of droplet diameters over time and distance. The results revealed the temperature-dependent effects of physical properties, such as boiling point, liquid density, and enthalpy of vaporization, and showed the complex interactions of preferential vaporization and temperature-dependent influences of physical properties for multi-component fuels.
Article Energy & Fuels

An experimental and modeling study on the oxidation of ammonia-methanol mixtures in a jet stirred reactor

Yuan Zhuang, Ruikang Wu, Xinyan Wang, Rui Zhai, Changyong Gao

Summary: Through experimental validation and optimization of the chemical kinetic model, it was found that methanol can accelerate the oxidation reaction of ammonia, and methanol can be rapidly oxidized at high concentration. HO2 was found to generate a significant amount of OH radicals, facilitating the oxidation of methanol and ammonia. Rating: 7.5/10.
Article Energy & Fuels

Improving the biodiesel combustion and emission characteristics in the lean pre-vaporized premixed system using diethyl ether as a fuel additive

Radwan M. EL-Zohairy, Ahmed S. Attia, A. S. Huzayyin, Ahmed I. EL-Seesy

Summary: This paper presents a lab-scale experimental study on the impact of diethyl ether (DEE) as an additive to waste cooking oil biodiesel with Jet A-1 on combustion and emission features of a swirl-stabilized premixed flame. The addition of DEE to biodiesel significantly affects the flame temperature distribution and emissions. The W20D20 blend of DEE, biodiesel, and Jet A-1 shows similar flame temperature distribution to Jet A-1 and significantly reduces UHC, CO, and NOx emissions compared to Jet A-1.
Article Energy & Fuels

Condensation characteristics of ammonia vapor during supersonic separation: A novel approach to ammonia-hydrogen separation

Jiang Bian, Ziyuan Zhao, Yang Liu, Ran Cheng, Xuerui Zang, Xuewen Cao

Summary: This study presents a novel method for ammonia separation using supersonic flow and develops a mathematical model to investigate the condensation phenomenon. The results demonstrate that the L-P nucleation model accurately characterizes the nucleation process of ammonia at low temperatures. Numerical simulations also show that increasing pressure and concentration can enhance ammonia condensation efficiency.
Article Energy & Fuels

Multivariate time series prediction for CO2 concentration and flowrate of flue gas from biomass-fired power plants

Shiyuan Pan, Xiaodan Shi, Beibei Dong, Jan Skvaril, Haoran Zhang, Yongtu Liang, Hailong Li

Summary: Integrating CO2 capture with biomass-fired combined heat and power (bio-CHP) plants is a promising method for achieving negative emissions. This study develops a reliable data-driven model based on the Transformer architecture to predict the flowrate and CO2 concentration of flue gas in real time. The model validation shows high prediction accuracy, and the potential impact of meteorological parameters on model accuracy is assessed. The results demonstrate that the Transformer model outperforms other models and using near-infrared spectral data as input features improves the prediction accuracy.