4.7 Article Proceedings Paper

Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation

期刊

FUEL
卷 101, 期 -, 页码 115-128

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2010.10.056

关键词

Post-combustion CO2 capture; Coal-fired power plant; Flexibility; Dynamic modelling and simulation; Scale-up

资金

  1. RWE npower
  2. Research Council UK Energy Programme [NE/H013865/1]
  3. Natural Environment Research Council [NE/H013865/1, NE/H01392X/1] Funding Source: researchfish
  4. NERC [NE/H013865/1, NE/H01392X/1] Funding Source: UKRI

向作者/读者索取更多资源

This study aims to provide insights into the design and operation of full-scale post-combustion CO2 capture for a 500 MWe sub-critical power plant through dynamic modelling and simulation. The development and validation of the dynamic models of the power plant and CO2 capture plant are described. In addition, the scale-up of the CO2 capture plant from pilot plant scale (where it was validated) to full scale is discussed. Subsequently the manner in which the two plant models were linked is discussed. A floating IP/LP crossover pressure configuration is used. A throttling valve is included between the LP turbine and draw-off point to prevent pressures at the crossover from dropping below required levels in the reboiler for solvent regeneration. The flue gas from the power plant is treated before it is sent to the CO2 capture plant. Four case studies are considered. The first investigates the effect of increasing solvent concentration on the performance of the power plant with the capture plant. The second investigates which absorber packing height offers a good balance between capital and operating costs. The two dynamic case studies show that the CO2 capture plant has a slower response than the power plant. They also reveal an interaction of CO2 capture level and power plant output control loops making it difficult to achieve steady power output levels quickly. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据