4.7 Article

Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 69, 期 -, 页码 96-107

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2014.01.019

关键词

Radiation-induced skin injury; Protein and miRNA profiling; Peroxiredoxin-6; Free radicals

资金

  1. National Natural Science Foundation of China [81102078, 81172597, 81372433]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

Radiation-induced skin injury is a serious concern during radiotherapy. However, the molecular mechanism underlying the pathogenesis of radiation-induced skin injury has not been extensively reported. Most biological functions are performed and regulated by proteins and noncoding RNAs, including microRNAs (miRNAs). The interplay between mRNA and miRNA has been implicated in disease initiation and progression. Technical advances in genomics and proteomics have enabled the exploration of the etiology of diseases and have the potential to broaden our understanding of the molecular pathogenesis of radiation-induced skin injury. In this study, we compared the protein and miRNA expression in rat skin irradiated with a 45-Gy electron beam with expression from adjacent normal tissues. We found 24 preferentially expressed proteins and 12 dysregulated miRNAs in irradiated skin. By analyzing the protein and miRNA profiles using bioinformatics tools, we identified a possible interaction between miR-214 and peroxiredoxin-6 (PRDX-6). Next, we investigated the expression of PRDX-6 and the consequences of its dysregulation. PRDX-6 is suppressed by radiation-inducible miR-214 and is involved in the pathogenesis of radiation-induced skin injury. Overexpression of PRDX-6 conferred radioresistance on cells, decreased cell apoptosis, and preserved mitochondrial integrity after radiation exposure. In addition, in vivo transfection with PRDX-6 reduced radiation-induced reactive oxygen species and the malondialdehyde concentration and ameliorated radiation-induced skin damage in rats. Our present findings illustrate the molecular changes during radiation-induced skin injury and the important role of PRDX-6 in ameliorating this damage in rats. (c) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据