4.7 Article

Depletion of a nucleolar protein activates xenobiotic detoxification genes in Caenorhabditis elegans via Nrf/SKN-1 and p53/CEP-1

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 52, 期 5, 页码 937-950

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2011.12.009

关键词

Ribosome biogenesis; Gene regulation; Stress; Ageing

资金

  1. NSF [IOS-1120130]

向作者/读者索取更多资源

The nucleolus has recently emerged as a major coordinator of cellular stress responses by regulating the tumor suppressor p53. However, it is not known if the nucleolus regulates the cap 'n' collar (CnC) transcription factors SKN-1 and Nrf2, which activate conserved antioxidant and detoxification responses in C. elegans and mammals, respectively. A screen for negative regulators of detoxification genes in C. elegans identified the conserved WD40 repeat containing protein WDR-46. This protein is highly conserved with yeast UTP7, which functions in 18S rRNA processing and assembly of the 40S small ribosomal subunit. WDR-46 is expressed in the nucleoli of multiple tissues in C. elegans and is required for rRNA processing. Mutation or silencing of WDR-46 activates the single C. elegans CnC homologue SKN-1 and increases expression of its target genes. Depletion of wdr-46 reduces lifespan and stress resistance and SKN-1 partially compensates. Lastly, the C. elegans p53 homologue CEP-1 is partially required for activation of gst-4 when wdr-46 or other ribosome processing genes are silenced but not when translation initiation genes are silenced suggesting that disruptions to nucleolar function can activate SKN-1 by a mechanism that involves p53/cep-1 and is independent of protein translation. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Correction Biochemistry & Molecular Biology

miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington's disease (vol 209, pg 292, 2023)

Siew Chin Chan, Chih-Wei Tung, Chia-Wei Lin, Yun-Shiuan Tung, Po-Min Wu, Pei-Hsun Cheng, Chuan-Mu Chen, Shang-Hsun Yang

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis

Suyuan Liu, Meiling Tan, Jiangxue Cai, Chenxuan Li, Miaoxin Yang, Xiaoxiao Sun, Bin He

Summary: This study reveals that the antibiotic doxycycline effectively inhibits NLRP3 inflammasome activation by targeting mitochondrial translation and mtDNA synthesis, offering potential for the treatment of NLRP3-related diseases.

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Protectin D1 inhibits TLR4 signaling pathway to alleviate non-alcoholic steatohepatitis via upregulating IRAK-M

Hao Liu, Nana Li, Ge Kuang, Xia Gong, Ting Wang, Jun Hu, Hui Du, Minxuan Zhong, Jiashi Guo, Yao Xie, Yang Xiang, Shengwang Wu, Yiling Yuan, Xinru Yin, Jingyuan Wan, Ke Li

Summary: Protectin D1 (PTD1) improves hepatic steatosis, inflammation and fibrosis in a NASH mouse model by inhibiting the activation of TLR4 downstream signaling pathway, possibly through upregulation of IRAK-M expression, suggesting a potential new treatment for NASH.

FREE RADICAL BIOLOGY AND MEDICINE (2024)